On the Optimisation and Regulation of Clinical Trials
Doctoral thesis, 2018

The basic premise of this thesis is that Bayesian Decision Theory (BDT) can and should be used to solve clinical trial design problems. While the flexibility of the framework allows for accommodating a great variety of situations, it also requires an explicit consideration of the gains and costs associated with the trial. This leads to an increased understanding of how the optimal design depends not only on statistical considerations, but also on the consequences of the decisions made during and after the trial.

The main contribution of the thesis consists of the four papers appended. In Paper I, optimisation is done by a drug company, taking the approval decision of a regulatory authority and the reimbursement decision of a health care insurer into account. A particular point of interest in this model is the effect that the uncertainty surrounding the insurer's willingness to pay has on the company's optimisation. Papers II and III are both concerned with comparing a number of different designs in the special case where the patient population can be partitioned using a binary biomarker. While Paper II restricts the analysis to single-stage designs, Paper III also considers adaptive, two-stage designs. The main method of analysis in all these papers is backward induction. Paper IV revisits Anscombe's classical model on fully sequential trials and also considers a number of different extensions. Approximate solutions are obtained using continuous-time optimal stopping theory. In addition to the papers, the thesis includes a discussion of the problem of optimal regulation of clinical trials, and defines and solves two simple example models.

Since several of the analyses presented in this thesis provide a detailed demonstration of how to formulate and solve clinical trial design problems, it should be of interest to statisticians seeking to apply BDT to real-world problems. Further, since the implications that the solutions have for regulation and reimbursement are discussed at several places, it should also be of value to government agencies tasked with creating an efficient environment for drug development.

decision theory

Bayesian statistics

optimal stopping.

clinical trials

subgroup analysis

drug regulation

Pascal
Opponent: Prof. Tim Friede, Department of Medical Statistics, University Medical Center Göttingen

Author

Sebastian Jobjörnsson

Chalmers, Mathematical Sciences, Applied Mathematics and Statistics

Bayesiansk beslutsteori är ett generellt ramverk för att matematiskt beskriva
och analysera beslutsproblem som involverar osäkerhet. En specifik typ av
beslutsproblem av stor praktisk betydelse består i att optimera de kliniska
försök som används för att testa nya läkemedel. I denna avhandling for-
muleras ett antal beslutsproblem som motsvarar olika typer av kliniska försök.
Den optimala försöksdesignen hittas genom att maximera den förväntade nyt-
tan för beslutsfattaren.

Många kliniska försök utförs av vinstdrivande företag som ett sista steg i
utvecklingsprocessen av ett nytt läkemedel. Konsekvenserna för ett sådant
företag som följer av ett givet försöksresultat bestäms av de myndigheter som
är ansvariga för godkännande och prissättning av nya läkemedel. Vilken de-
sign som är optimal för företaget beror därmed på vilka specifika regler som
fastställts. Denna design påverkar i sin tur den förväntade nyttan både för de
patienter som ingår i studien och de som får behandlingen efteråt. Genom att
ändra reglerna för godkännande och prissättning så kan företagets agerande
styras till att optimera den förväntade nyttan för den totala patientpopula-
tionen. En enkel modell av detta problem, där en optimal uppsättning regler
söks, illustreras med hjälp av några exempel.

Subject Categories

Probability Theory and Statistics

ISBN

978-91-7597-804-8

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4485

Publisher

Chalmers

Pascal

Opponent: Prof. Tim Friede, Department of Medical Statistics, University Medical Center Göttingen

More information

Latest update

10/15/2018