Lipid-based liquid crystals as drug delivery vehicles for antimicrobial peptides
Doctoral thesis, 2018
In this thesis, lipid-based liquid crystalline (LC) structures have been examined as carriers for AMPs. LC structures of polar lipids have potential to be used as carriers and delivery systems in various pharmaceutical applications. This is due to their ability to solubilize and encapsulate hydrophilic, hydrophobic and amphiphilic substances. An important feature of these LC systems is that they can coexist with an excess of water, which enables fragmentation of the highly viscous gels into LC nanoparticles (LCNPs), i.e. cubosomes and hexosomes, in the presence of a suitable stabilizer. Peptides and proteins can be incorporated into the lipid self-assembled structures, thereby protecting them from chemical and proteolytic degradation. Cubosomes and hexosomes were investigated as drug delivery vehicles for the three AMPs: i) AP114, an improved plectasin derivative originating from the fungus Pseudoplectania nigrella, ii) DPK-060, derived from the endogenous human protein kininogen and iii) LL-37, a human AMP found in the cathelicidin family. Phase behavior, different preparation methodologies of the LCNPs, antimicrobial effect and proteolytic protection of the AMPs were studied. Moreover, the interaction between AMP-loaded particles with bacteria and bacterial mimicking membranes was investigated. Formulations aimed for pulmonary and topical administration were also evaluated. Results showed that cubic LC phases were most sensitive to the incorporation of AMPs. Depending on the nature of the AMP, different changes in the curvature of the systems were observed. Cubosomes loaded with AMPs exhibited good antimicrobial activity and were found to protect the proteolytic sensitive LL-37 from enzymatic degradation. Data strongly suggested that the release of AMP from the particles cannot solely be explained by the antimicrobial effect. Cubosomes loaded with LL-37 are thought to adsorb onto bacterial membranes, resulting in cell death.
infection
phase behavior
antimicrobial effect
Liquid crystals
hexosome
antimicrobial resistance
AMP
antimicrobial peptide
pulmonary delivery
topical delivery
glycerol monooleate
bacterial membrane
cubosome
liquid crystalline nanoparticles
membrane interaction
proteolysis
Author
Lukas Boge
Chalmers, Chemistry and Chemical Engineering, Applied Chemistry
Lipid-Based Liquid Crystals As Carriers for Antimicrobial Peptides: Phase Behavior and Antimicrobial Effect
Langmuir,;Vol. 32(2016)p. 4217-4228
Journal article
Cubosomes post-loaded with antimicrobial peptides: Characterization, bactericidal effect and proteolytic stability
International Journal of Pharmaceutics,;Vol. 526(2017)p. 400-412
Journal article
Freeze-dried and re-hydrated liquid crystalline nanoparticles stabilized with disaccharides for drug-delivery of the plectasin derivative AP114 antimicrobial peptide
Journal of Colloid and Interface Science,;Vol. 522(2018)p. 126-135
Journal article
The interaction of antimicrobial peptide LL-37 loaded cubosomes with model and bacterial membranes, Lukas Boge, Kathryn Browning, Randi Nordström, Mario Campana, Josefin Seth Caous, Maja Hellsing, Lovisa Ringstad and Martin Andersson
Cubosomes for topical delivery of the antimicrobial peptide LL-37, Lukas Boge, Karin Hallstensson, Lovisa Ringstad, Jenny Johansson, Therese Andersson, Mina Davoudi, Per Tomas Larsson, Margit Mahlapuu, Joakim Håkansson and Martin Andersson
Denna avhandling handlar om att försöka kapsla in och skydda olika antimikrobiella peptider i mycket små partiklar (<0.5 µm) tillverkade av lipider (”fetter”). Lipiderna som använts består av två kemiskt mycket olika segment; ett hydrofilt (”vattenlösligt”) och ett hydrofobt (”fettlösligt”). Detta medför att lipidmolekylerna spontant ordnar sig (själv-associerar) i mycket komplexa en-, två- och tredimensionella nanostrukturer när de blandas med vatten. De nanostrukturer som då bildas har visat sig mycket användbara för inkapsling och levererans av olika läkemedel, däribland antimikrobiella peptider. I detta arbeta har de peptidladdade partiklarnas bakteriedödande förmåga undersökts grundligt i olika modeller, och hur de tar död på bakterierna har också utretts. Det visade sig att beroende på vilken antimikrobiell peptid och vilken nanostruktur på partiklarna som användes, påverkades deras bakteriedödande förmåga drastiskt. Partiklar av kubisk nanostruktur var mest förddelaktiga att använda sig av. De kunde både skydda en antimikrobiell peptid som är känslig mot enzymatisk nedbrytning och samtidigt uppvisa bra bakteriedödande förmåga.
Driving Forces
Sustainable development
Areas of Advance
Nanoscience and Nanotechnology (SO 2010-2017, EI 2018-)
Materials Science
Subject Categories
Pharmaceutical Sciences
Physical Chemistry
Other Chemistry Topics
Infrastructure
Chalmers Materials Analysis Laboratory
ISBN
978-91-7597-809-3
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4490
Publisher
Chalmers
KB, Kemigården 4
Opponent: Prof. Clive Prestidge, University of South Australia, Australia