Nanoparticle Self-assembly on Prefabricated Nano Strucutres
Doctoral thesis, 2018
This thesis focus on contacting single molecules by isolating them between nanoparticles (or dimers), that can be guided onto prefabricated structures in an approach that utilizes both top-down and bottom up concepts. The deposition efficiency was tested on a variety of materials, including metals and functionalized surfaces. This was done as a pre-study in order to determine the optimum conditions for particle deposition. A model based on a combination of DLVO-theory (Derjaguin, Landau, Verwey and Overbeek) and RSA (random sequential adsorption) was developed in order to explain the deposition process and the interactions between particles and a substrate. Spatial descriptive statistics were used to see if the pattern of the particles from simulated and real depositions deviated from CSR (complete spatial randomness) and to compare the inter-particle distances. Potential measurements were compared to the nanoparticle densities. The experiment showed that materials such as nickel and aluminium attract the negatively charged particles used in this thesis. As a next step, particles were deposited on arrays of nanosized objects of different shape and size in order to optimize deposition parameters and electrode design. Finally, electrical measurements of BDT (benzene-1,4-dithiol) and HDT (1,6-hexanedithiol) linked dimers were performed as a proof of principal, indicating that conductance through BDT is higher compared to HDT. More experiments is needed in order to confirm this. However, the deposition is still inefficient, only 5 % of the nanogaps are filled with a dimer. This number needs to be increased in order for molecular electronics to be able to compete with upcoming techniques such as extreme UV-lithography.
Nanofabrication
Nanoparticles
single molecular electronics
Self-assembly
Author
Johnas Eklöf
Chalmers, Chemistry and Chemical Engineering, Applied Chemistry
Guided selective deposition of nanoparticles by tuning of the surface potential
Europhysics Letters,;Vol. 119(2017)
Journal article
Controlling deposition of nanoparticles by tuning surface charge of SiO2 by surface modifications
RSC Advances,;Vol. 6(2016)p. 104246-104253
Journal article
Parallel Fabrication of Self‐Assembled Nanogaps for Molecular Electronic Devices
Small,;Vol. 14(2018)
Journal article
Johnas Eklöf-Österberg , Joakim Löfgren, Paul Erhart and Kasper Moth-Poulsen, Optimazation of geometrical structures designed for assembly of nano-sized objects, 2018.
Denna avhandling fokuserar på hur man kan lösa problemet med att placera enskilda molekyler parallellt genom att först koppla ihop en molekyl mellan två partiklar i storleksordningen av 100 nm och sedan deponera dessa på elektroder konstruerade i förväg med hjälp av litografi. Detta kan ske tack vare de elektrostatiska interaktionerna (DLVO-teori) som uppkommer mellan en negativt laddad partikel och en positivt laddad elektrod. Genom att använda sig av denna procedur så kan man konstruera en enhet som är en tiondels så stor som dagens transistorer med hjälp av konventionell produktionsteknik. Det är dock lång väg kvar innan tekniken som presenteras i denna avhandling kommer att kunna användas i stor skala och mer forskning måste till för att kunna producera logiska kretsar som kan utför mer avancerade beräkningar.
Single Molecule Nano Electronics (SIMONE)
European Commission (EC) (EC/FP7/337221), 2014-02-01 -- 2019-01-31.
Areas of Advance
Nanoscience and Nanotechnology
Materials Science
Subject Categories
Materials Chemistry
Nano Technology
Other Electrical Engineering, Electronic Engineering, Information Engineering
Infrastructure
Nanofabrication Laboratory
ISBN
978-91-7597-819-2
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4500
Publisher
Chalmers
KC
Opponent: Heiko Wolf, Zurich Research Laboratory, Zurich, Switzerland