Equilibrium finite-frequency noise of an interacting mesoscopic capacitor studied in time-dependent density functional theory
Paper in proceeding, 2018

We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.

quantum dot

time-dependent density-functional theory

single-electron source

noise

Author

Niklas Dittmann

Forschungszentrum Jülich

RWTH Aachen University

Chalmers, Microtechnology and Nanoscience (MC2), Applied Quantum Physics

Janine Splettstoesser

Chalmers, Microtechnology and Nanoscience (MC2), Applied Quantum Physics

Nicole Helbig

Forschungszentrum Jülich

Journal of Physics: Conference Series

17426588 (ISSN) 17426596 (eISSN)

Vol. 969 1 012145

28th International Conference on Low Temperature Physics (LT28)
Gothenburg, Sweden,

Areas of Advance

Nanoscience and Nanotechnology

Roots

Basic sciences

Subject Categories (SSIF 2011)

Other Physics Topics

Condensed Matter Physics

DOI

10.1088/1742-6596/969/1/012145

More information

Latest update

1/18/2019