A multi-model comparison of meteorological drivers of surface ozone over Europe
Journal article, 2018

The implementation of European emission abatement strategies has led to a significant reduction in the emissions of ozone precursors during the last decade. Ground-level ozone is also influenced by meteorological factors such as temperature, which exhibit interannual variability and are expected to change in the future. The impacts of climate change on air quality are usually investigated through air-quality models that simulate interactions between emissions, meteorology and chemistry. Within a multi-model assessment, this study aims to better understand how air-quality models represent the relationship between meteorological variables and surface ozone concentrations over Europe. A multiple linear regression (MLR) approach is applied to observed and modelled time series across 10 European regions in springtime and summertime for the period of 2000-2010 for both models and observations. Overall, the air-quality models are in better agreement with observations in summertime than in springtime and particularly in certain regions, such as France, central Europe or eastern Europe, where local meteorological variables show a strong influence on surface ozone concentrations. Larger discrepancies are found for the southern regions, such as the Balkans, the Iberian Peninsula and the Mediterranean basin, especially in springtime. We show that the air-quality models do not properly reproduce the sensitivity of surface ozone to some of the main meteorological drivers, such as maximum temperature, relative humidity and surface solar radiation. Specifically, all air-quality models show more limitations in capturing the strength of the ozone-relative-humidity relationship detected in the observed time series in most of the regions, for both seasons. Here, we speculate that dry-deposition schemes in the air-quality models might play an essential role in capturing this relationship. We further quantify the relationship between ozone and maximum temperature (m(o3-T), climate penalty) in observations and air-quality models. In summertime, most of the air-quality models are able to reproduce the observed climate penalty reasonably well in certain regions such as France, central Europe and northern Italy. However, larger discrepancies are found in springtime, where air-quality models tend to overestimate the magnitude of the observed climate penalty.

CLIMATE-CHANGE

EMISSION RATE VARIABILITY

CHEMISTRY TRANSPORT MODELS

DRY DEPOSITION

RELATIVE IMPORTANCE

AIR-QUALITY MODEL

ATMOSPHERIC BOUNDARY-LAYER

BIOGENIC EMISSIONS

GRID RESOLUTION

NITROGEN DEPOSITION

Author

Noelia Otero

Institute for Advanced Sustainability Studies (IASS)

Freie Universität Berlin

Jana Sillmann

Cicero Senter for klimaforskning

Kathleen Mar

Institute for Advanced Sustainability Studies (IASS)

Henning W. Rust

Freie Universität Berlin

Sverre Solberg

Norwegian Institute for Air Research (NILU)

Camilla Andersson

SMHI

M. Engardt

SMHI

Robert Bergström

Chalmers, Space, Earth and Environment, Microwave and Optical Remote Sensing

SMHI

B. Bessagnet

Institut National de l'Environnement Industriel et des Risques (INERIS)

Augustin Colette

Institut National de l'Environnement Industriel et des Risques (INERIS)

Florian Couvidat

Institut National de l'Environnement Industriel et des Risques (INERIS)

C. Cuvelier

European Commission (EC)

S. Tsyro

Norwegian Meteorological Institute

Hilde Fagerli

Norwegian Meteorological Institute

M. Schaap

Freie Universität Berlin

Netherlands Organisation for Applied Scientific Research (TNO)

Astrid Manders

Netherlands Organisation for Applied Scientific Research (TNO)

Mihaela Mircea

ENEA

Gino Briganti

ENEA

Andrea Cappelletti

ENEA

Mario Adani

ENEA

Massimo D'Isidoro

ENEA

Maria-Teresa Pay

Barcelona Supercomputing Center (BSC)

M. R. Theobald

Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (Ciemat)

Marta G. Vivanco

Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (Ciemat)

Peter Wind

Norwegian Meteorological Institute

University of Tromsø – The Arctic University of Norway

Narendra Ojha

Max Planck Society

Valentin Raffort

École des Ponts ParisTech

Tim Butler

Institute for Advanced Sustainability Studies (IASS)

Freie Universität Berlin

Atmospheric Chemistry and Physics

16807316 (ISSN) 16807324 (eISSN)

Vol. 18 16 12269-12288

Subject Categories (SSIF 2011)

Meteorology and Atmospheric Sciences

Climate Research

Roots

Basic sciences

DOI

10.5194/acp-18-12269-2018

More information

Latest update

10/1/2025