Hierarchical Structuring of Mg2Si1-xSnx Alloys for Lower Thermal Conductivity and Thermal Conductivity as Probe for Structural Characterization
Licentiate thesis, 2018
Due to the discrepancy in the available quasi-binary phase diagrams Mg2Si-Mg2Sn below the solidus, one focus of the current study was on the estimation of the binodal curve position. For this, Si-rich Mg2Si1-xSnx alloys of different compositions were treated at different temperatures and their structure was investigated utilizing X-ray diffraction. The study showed an agreement of the results with one of the theoretically calculated binodal curve in the Si-rich region. However, the compositions of the Sn-rich phases did not fit to this or any other known models. Moreover, Sn-rich phases treated at higher temperatures contained less Si, whereas the solubility limit of Si in the Sn-rich phase is expected to grow with temperature, which can be a result of pinning effect provided by particle/grain boundaries.
The acquired approximate position of the binodal curve in the Si-rich region allows to control the phase separation process, and hence the microstructure. Thus, another focus of the thesis was put on creating the finest and most promising microstructure for thermoelectric materials, i.e. alternating lamellae-type endotaxial phases, which can, in principle, be achieved during spinodal decomposition. Such microstructure was found during the experiments of the current work. It is shown that when a compound enters the miscibility gap at temperatures that are too low for migration of the atoms over long distances, it rapidly decomposes forming lamellae with similar compositions. Alternatively, if a compound enters the miscibility gap at higher temperatures, higher cooling rates affect the phase separation similarly.
In addition, it was suggested to utilize the Transient plane source technique in quality control and advanced thermal conductivity characterization of manufactured thermoelectric legs. Hence, the thesis also includes the recent development of the so-called Structural probe technique, which makes it possible to convert the temperature vs. time function to the unique thermal conductivity vs. probing depth. Since the thermal conductivity is sensitive to the structural constitution of a material, such function allows to assess the microstructure variations with depth. The technique was successfully tested on homogeneous and inhomogeneous materials as well as the materials with macroscopic defects.
structural probing
Rietveld refinement
hot disc
spinodal decomposition
magnesium silicide-stannide
Microstructuring
phase separation
X-ray diffraction
thermal conductivity
thermoelectrics
Author
Andrey Sizov
Chalmers, Chemistry and Chemical Engineering, Chemical Technology
Sizov A., Reardon H., Iversen B.B., Erhart P., Palmqvist A.E.C. Influence of phase separation and spinodal decomposition on microstructure of Mg2Si1-xSnx alloys
Driving Forces
Sustainable development
Areas of Advance
Nanoscience and Nanotechnology (SO 2010-2017, EI 2018-)
Energy
Materials Science
Subject Categories
Materials Chemistry
Other Materials Engineering
Condensed Matter Physics
Infrastructure
Chalmers Materials Analysis Laboratory
Publisher
Chalmers
KC-salen, Kemigården 4, Chalmers