Ultrasonic Attenuation in Polycrystalline Materials in 2D
Journal article, 2019
Grains in a polycrystalline material, typically a metal, act as scatterers of ultrasonic waves and thus give rise to attenuation of the waves. Grains have anisotropic stiffness properties, typically orthotropic or cubic. A new approach is proposed to calculate attenuation in a 2D setting starting from the scattering by an anisotropic circle in an isotropic surrounding. This problem has recently been solved, giving explicit, simple expressions for the elements of the transition (T) matrix (which gives the relation between the the incoming and scattered fields) when the circle is small compared to the ultrasonic wavelengths. The T matrix can be used to calculate the total scattering cross section, which in turn can be used to estimate the attenuation in the material. Explicit expressions for the attenuation coefficient for longitudinal and transverse waves are obtained for a cubic material, and contrary to results in the literature these expressions are valid also for strong anisotropy. For the longitudinal attenuation coefficient a comparison with recent FEM results for Inconel 600 gives excellent agreement.
Cubic material
2D
Ultrasonic attenuation