Molecular Doping of Polar Conjugated Polymers
Doctoral thesis, 2019

Organic semiconductors may enable a wide range of flexible electronics, such as flexible displays or solar cells. Conjugated polymers constitute one of the most widely studied class of organic semiconductors. Molecular doping is an important tool to adjust their electrical conductivity through introduction of negative or positive charges by addition of molecular dopants. However, solution-processing of conjugated polymers with molecular dopants is limited due to precipitation and a low number of charges formed per dopant molecule as a result of dopant aggregation or inappropriate energy levels. Thus, large amounts of dopant are required that compromise the nanostructure of conjugated polymers and in turn reduce the electrical conductivity, which is furthermore sensitive to elevated temperatures or the exposure to air in case of n-doping. Therefore, ways that mitigate processing issues and increase the efficiency and stability of molecular doping are highly desired.

This thesis explores several concepts that may allow to improve the efficiency of molecular doping. A reduction of the required amount of dopant molecules is achieved by enhancing the compatibility of conjugated polymer:dopant pairs, which results in increased numbers of charges that are created per dopant molecule. In particular, polar side chains on conjugated polymers permit processing of polymer:dopant pairs from the same solution and largely suppress dopant aggregation resulting in improved electrical conductivity for p- and n-doping. Additionally, both the thermal stability of p-doped and air stability of n-doped films are found to benefit from polar side chains. Further, a low ionisation energy of conjugated polymers gives rise to dianion formation of common p-dopants. This double doping results in formation of two charges per dopant molecule and, thus, allows doubling of the doping efficiency. The concepts presented in this thesis provide several important design rules to guide the development of more efficient and stable molecularly doped conjugated polymers.

thermal stability

dopant dianion

air stability

compatibility

polar conjugated polymer

double doping

molecular doping

Vasa A-salen, Vera Sandbergs Alle 8
Opponent: Professor Alberto Salleo, Stanford University, USA

Author

David Kiefer

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Smarttelefoner och datorer har tagit en stor roll i vår vardag. Vi använder dem för att kommunicera med andra människor, att surfa på webben eller att streama musik eller filmer. Allt detta möjliggörs genom material med halvledande egenskaper. Deras förmåga att leda elektrisk ström ligger mellan metaller och isolatorer, som t.ex. vanlig plast. De vanligaste halvledarna som används idag har hårda och spröda egenskaper, exempelvis kisel. För att möjliggöra flexibel elektronik som t.ex. böjliga bildskärmar eller solceller behövs dock mjuka och elastiska material. Särskilda halvledande plaster som tack vare sina kemiska strukturer kan leda elektrisk ström har därför stor potential. Dessutom kan dem bearbetas genom etablerade tryckmetoder. Halvledande plaster måste ha en tillräckligt hög ledningsförmåga för att användas i modern elektronik. Detta går att uppnå med att tillsätta av laddningsbärare genom ”dopning” med speciella molekyler. Dock så försämras möjligheterna att bearbeta plasten samtidigt som man gör detta.

Denna avhandling utforskar några koncept som underlättar och effektiverar dopning av ledande plaster. Särskilda förändringar av den kemiska strukturen av halvledande plaster leder fram till en förbättrad bearbetbarhet. Dessutom undersöks en möjlighet att dubbla antalet laddningsbärare som generareas per dopningsmolekyl.

Smartphones and personal computers are a part of our daily life. We use them to communicate with other people, to surf on the internet or to stream music or films. All of this is made possible by materials with semiconducting properties. Their ability to conduct electricity is between those of metals and insulators, such as common polymers. The most common semiconductors today are hard and rigid materials like silicon. To realize flexible electronics, such as foldable displays or solar cells, soft and elastic materials are required. Semiconducting polymers, which due to their chemical structure can conduct electricity and can be processed with common printing techniques, have a strong potential. For the use of semiconducting polymers for modern electronics a sufficiently high electrical conductivity is needed, which can be achieved by addition of charge carriers by ‘doping’ with certain molecules. However, these dopant molecules compromise the processability of semiconducting polymers.

This thesis explores several concepts, which can help to ease doping of semiconducting plastics and increase its efficiency. Changes to the chemical structure of the semiconducting polymer lead to an improved processability with dopant molecules. Furthermore, a concept that allows doubling of the amount of charge carrier per dopant molecule is explored.

Subject Categories

Polymer Chemistry

Textile, Rubber and Polymeric Materials

Materials Chemistry

Areas of Advance

Materials Science

ISBN

978-91-7905-114-3

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4581

Publisher

Chalmers

Vasa A-salen, Vera Sandbergs Alle 8

Opponent: Professor Alberto Salleo, Stanford University, USA

More information

Latest update

5/14/2019