Statistical assessment of genomic variability in tumours and bacterial communities
Doctoral thesis, 2019
First, a method for identification of tumour-specific (somatic) mutations was developed, which included steps for noise-reduction, sensitive detection of DNA alterations and removal of systematic errors. In Paper I, the method was applied to exome-sequenced paired normal–tumour samples from pheochromocytoma patients. A significantly higher mutation rate was found in malignant compared to benign tumours and three genes with recurrent somatic mutations, exclusively located in malignant tumours, were identified. In paper II and III, somatic mutations were identified in patients with acute myeloid leukemia and evaluated as biomarkers in personalised deep sequencing analysis of remaining cancer cells after treatment. In paper III, a statistical model correcting for position-specific errors in the data was developed and shown to provide superior sensitivity compared to standard techniques. In paper IV, clinically relevant molecular subgroups of metastatic small intestinal neuroendocrine tumours were identified based on miRNA gene expression profiles. Survival analysis and subsequent validation suggested miR-375 as a prognostic biomarker. In paper V, a hierarchical Bayesian model for detecting differences on nucleotide level between microbial communities is proposed. By including between-sample variability and utilizing a shrinkage approach, the model was able to perform well both in cases of few samples and high biological variability. Finally, the model was used to detect antibiotic resistance mutations in bacteria.
This thesis demonstrates that dedicated statistical analysis and knowledge of the underlying error structure present in high-dimensional biological data is of importance for enabling accurate interpretation and sound conclusions.
somatic mutations
hierarchical Bayesian modelling
cancer genetics
high-throughput sequencing
metagenomics
personalised diagnostics
Author
Anna Rehammar
Chalmers, Mathematical Sciences, Applied Mathematics and Statistics
Malignant pheochromocytomas/paragangliomas harbor mutations in transport and cell adhesion genes.
International Journal of Cancer,;Vol. 138(2016)p. 2201-11
Journal article
Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next generation sequencing.
European Journal of Haematology,;Vol. 98(2017)p. 26-37
Journal article
miRNA profiling of small intestinal neuroendocrine tumors defines novel molecular subtypes and identifies miR-375 as a biomarker of patient survival
Modern Pathology,;Vol. 31(2018)p. 1302-1317
Journal article
Accurate and Sensitive Analysis of Minimal Residual Disease in Acute Myeloid Leukemia Using Deep Sequencing of Single Nucleotide Variations
Journal of Molecular Diagnostics,;Vol. 21(2019)p. 149-162
Journal article
A hierarchical Bayesian model for assessing differential nucleotide composition between metagenomes, Anna Rehammar, Anders Sjögren, Erik Kristiansson
Subject Categories
Bioinformatics (Computational Biology)
Medical Genetics
Probability Theory and Statistics
ISBN
978-91-7905-135-8
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4602
Publisher
Chalmers
sal Pascal, Matematiska vetenskaper, Chalmers tvärgata 3
Opponent: Docent Patrik Rydén, Institutionen för Matematik och Matematisk statistik, Umeå universitet