Use of remote sensing and in situ observations of the atmosphere in chemical transport models
Doctoral thesis, 2019

Measuring and simulating atmospheric chemical compositions helps us to better understand the impact from long-range transport of different pollutants. Aerosols and tropospheric ozone are examples of pollutants with life times long enough to get transported between continents. Thus, observing and modelling this transport and its interaction with the surrounding atmosphere is vital to providing information about the fate of these pollutants. The main subject of this thesis is to make combined use of, and exploit the advantages of both sources of information. This is done in two ways; (i) by evaluating model results with the help of observations, and (ii) by combining observations with model results by data analysis/assimilation.

The thesis is divided into four studies, where the first study sets the stage by providing a methodology for evaluating lateral boundary conditions (LBCs) in a regional chemical transport model (CTM). The methodology is applied to ozone and carbon monoxide, and includes a direct evaluation of LBCs at the boundary of a CTM, as well as an indirect evaluation of a model run. The results show that a combined direct and indirect evaluation give a more complete picture of how well a given set of LBCs perform, compared to using only a direct or indirect comparison.

To prepare for using the methodology from study one with aerosols, we needed an aerosol optical model that can map aerosol concentration fields onto aerosol optical properties. Therefore, the second study of this thesis investigates the impact of implementing a newly developed model with a realistic description of aerosol optical properties. The results show that realistic aerosol descriptions in an aerosol optics model impact radiometric quantities and radiative forcing to the same degree as including or omitting aerosol dynamics in a CTM.

Further, the aim is also to derive LBCs based on CTM results constrained by satellite retrieved aerosol optical properties. This requires us to know how much information we can use from the retrievals to constrain model variables. The main question of the third study therefore is, how much information do extinction and backscattering measurements contain about the chemical composition of atmospheric aerosol? The information content of extinction and backscattering measurements was analysed with a singular-value decomposition and was shown to increase with the number of observations and decrease with the observation error. We also found that the model variable best constrained with these types of measurements, was PM10.

The last and fourth study invokes the new aerosol optics model and the information content analysis, to constrain LBCs obtained from a hemispheric version of the CTM MATCH by use of CALIPSO extinction retrievals at a wavelength of 532 nm. An indirect evaluation with ground based observations, shows a bias reduction for PM10.

Climate

Air quality

Ground based observations

Satellite observations

Chemical transport modelling

EA, (EDIT-building) Hörsalsvägen 11
Opponent: Elisabetta Vignati, Senior research scientist and Head of Air and Climate Unit at European Commission Joint Research Center

Author

Emma Ward

Chalmers, Space, Earth and Environment, Microwave and Optical Remote Sensing

Ward, E. and Kahnert, M. Construction and implementation of lateral boundary conditions for aerosol particles from satellite observations of aerosol extinction profile

Luftens sammansättning påverkar både luftkvalitén och jordens strålningsbalans och har under de senaste decennierna även påverkats kraftigt av utsläpp från mänskliga källor. Att förstå och kartlägga luftens sammansättning har därför blivit allt viktigare.

Med hjälp av både modeller och observationer av atmosfären kan vi bättre förstå hur luftens sammansättning ändras över tid med olika emissioner, väderförhållanden samt kemiska och fysiska transformationer av spårgaser och aerosoler.

I denna avhandling används både en kemisk transportmodell som simulerar spridning av luftens sammansättning över Europa, samt mätningar från satelliter och marken för att utvärdera och förbättra långväga transport av ozon, kolmonoxid och aerosoler. Vi använder oss av den kemiska transportmodellen MATCH, som har utvecklats av Sveriges hydrologiska och meteorologiska institut (SMHI) och satellitobservationer från NASA:s EOS satelliter, samt markobservationer från nätverken ”Global Atmospheric Watch” (GAW) och EMEP.

Avhandlingen avser först att utvärdera MATCH långväga transport av spårgaserna ozon och kolmonoxid och sedan försöka förbättra denna transport för aerosoler med hjälp av en teknik som kallas för data-assimilation. Denna teknik kombinerar modell- och mätdata för att ge en bättre bild av verkligheten.

Subject Categories

Meteorology and Atmospheric Sciences

Physical Geography

Oceanography, Hydrology, Water Resources

ISBN

978-91-7905-133-4

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4600

Publisher

Chalmers University of Technology

EA, (EDIT-building) Hörsalsvägen 11

Opponent: Elisabetta Vignati, Senior research scientist and Head of Air and Climate Unit at European Commission Joint Research Center

More information

Latest update

5/21/2019