Diffusion of large molecules in steam-exploded wood
Doctoral thesis, 2019
In this thesis, the diffusion of large molecules in wood pretreated with steam explosion is studied experimentally and through mathematical modeling. During steam explosion, wood biomass is subjected to saturated steam at elevated pressure and is followed by a quick release to atmospheric pressure. This treatment leads to mechanical ruptures and chemical modifications of the wood structure. Fluorescently marked dextran probes, up to 40 kDa in size, were used in combination with Fluorescent Recovery after Photobleaching to study diffusion in samples prepared with steam explosion. In this method, the fluorophore is bleached with a high intensity laser, the recovery of fluorescent intensity by the surrounding molecules is measured, and an effective diffusion coefficient can be calculated. Mathematical modeling was performed within the Lattice Boltzmann framework, utilizing images from a scanning electron microscope and high-resolution X-ray tomography, to reconstruct an accurate representation of the structural features of the microscale in wood.
The main findings of this thesis show that fluorescent diffusion probes can be utilized to investigate diffusion in both native wood and steam-exploded pretreated wood. A relative difference between earlywood and latewood is shown, and an increase in diffusion caused by the disintegration of the cell wall structure is found. The sub-micron features of the bordered pits, which enable radial transport between wood cells, were reconstructed, as well as the general microstructure in wood. The effective diffusion coefficient was computed by solving the diffusion equation for each structure. It was found that the outer borders covering the internal structure of the bordered pit totally dominate the mass transfer resistance. Transversal diffusion rates in the microstructure were found to increase after steam explosion, depending on the degree of disintegration and local volume investigated. The steam-exploded samples generally had a lower tortuosity, or shorter diffusion pathway, than native samples. Multiscale modeling was used to overcome the high computational demand of resolving the small features of a bordered pit at the microscale. The models presented used a variable diffusion coefficient where in the result for a single bordered pit is used.
Wood
Large Molecules
Diffusion
LBM
Steam Explosion
FRAP
Author
Patric Kvist
Chalmers, Chemistry and Chemical Engineering, Chemical Technology
Lattice Boltzmann simulations of diffusion through native and steam-exploded softwood bordered pits
Wood Science and Technology,;Vol. 51(2017)p. 1261-1276
Journal article
Using fluorescent probes and FRAP to investigate macromolecule diffusion in steam-exploded wood
Wood Science and Technology,;Vol. 52(2018)p. 1395-1410
Journal article
För att underlätta frisättningen av biopolymerer från ved används ofta ett förbehandlingssteg, i syfte att fysiskt eller kemiskt förändra vedstrukturen, så att efterföljande behandling av veden underlättas. Förbehandlingsmetoden ångexplosion har undersökts i det här arbetet. Ångexplosion är en metod där ved behandlas med vattenånga vid ett förhöjt tryck. Efter en viss tid släpps trycket och veden lämnar tryckkärlet med höga hastigheter för att sedan samlas upp. Detta skapar en förändring av vedens inre cellstruktur som öppnar upp och gör den mer lättillgänglig.
I denna avhandling studeras diffusion av stora molekyler med hög molekylvikt i ved behandlat med ångexplosion. Den behandlade veden studerades med hjälp av en experimentell metod som utnyttjar fluorescerande molekyler för att följa diffusionsförloppet. Matematiska diffusionsmodeller har utvecklats som utnyttjar högupplösta bilder från mikroskop för att återskapa den inre cellstrukturen i ved på flera längdskalor. Beräkningar av diffusionsförloppet visar att ångexplosion öppnar upp vedstrukturen som leder till en ökning av diffusionshastigheten. Detta arbete ger en ökad förståelse av processen för att utvinna värdefulla biopolymerer från ved, där diffusion är en viktig del.
Driving Forces
Sustainable development
Subject Categories
Paper, Pulp and Fiber Technology
Chemical Engineering
ISBN
978-91-7905-149-5
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4616
Publisher
Chalmers
KB-salen, Kemigården 4
Opponent: Lennart Salmén, RISE Research Institutes of Sweden