Complex Organic Molecules in Star-Forming Regions of the Magellanic Clouds
Review article, 2019

The Large and Small Magellanic Clouds (LMC and SMC), gas-rich dwarf companions of the Milky Way, are the nearest laboratories for detailed studies on the formation and survival of complex organic molecules (COMs) under metal-poor conditions. To date, only methanol, methyl formate, and dimethyl ether have been detected in these galaxies-all three toward two hot cores in the N113 star-forming region in the LMC, the only extragalactic sources exhibiting complex hot-core chemistry. We describe a small and diverse sample of the LMC and SMC sources associated with COMs or hot-core chemistry, and compare the observations to theoretical model predictions. Theoretical models accounting for the physical conditions and metallicity of hot molecular cores in the Magellanic Clouds have been able to broadly account for the existing observations, but they fail to reproduce the dimethyl ether abundance by more than an order of magnitude. We discuss future prospects for research in the field of complex chemistry in the low-metallicity environment. The detection of COMs in the Magellanic Clouds has important implications for astrobiology. The metallicity of the Magellanic Clouds is similar to that of galaxies in the earlier epochs of the universe; thus, the presence of COMs in the LMC and SMC indicates that a similar prebiotic chemistry leading to the emergence of life, as it happened on Earth, is possible in low-metallicity systems in the earlier universe.

molecular abundances

star formation

Magellanic Clouds

astrochemistry

complex organic molecules

Author

Marta Sewiło

University of Maryland

NASA Goddard Space Flight Center

S.B. Charnley

NASA Goddard Space Flight Center

P. Schilke

University of Cologne

V. Taquet

Arcetri Astrophysical Observatory

Joana M. Oliveira

Keele University

Takashi Shimonishi

Tohoku University

Eva Wirström

Chalmers, Space, Earth and Environment, Onsala Space Observatory

R. Indebetouw

University of Virginia

National Radio Astronomy Observatory

Jacob L. Ward

Astronomisches Rechen-Institut Heidelberg

J. T. van Loon

Keele University

Jennifer Wiseman

NASA Goddard Space Flight Center

S. Zahorecz

National Astronomical Observatory of Japan

Osaka Prefecture University

Toshikazu Onishi

Osaka Prefecture University

Akiko Kawamura

National Astronomical Observatory of Japan

C. H.Rosie Chen

Max Planck Society

Yasuo Fukui

Nagoya University

Roya Hamedani Golshan

University of Cologne

ACS Earth and Space Chemistry

24723452 (eISSN)

Vol. 3 10 2088-2109

Interstellar Chemistry with Herschel

Swedish National Space Board (98/14), 2015-01-01 -- 2016-12-31.

Swedish National Space Board (158/12), 2013-01-01 -- 2014-12-31.

Swedish science support for SWI (Submillimetre Wave Instrument)

Swedish National Space Board (246/16), 2017-01-01 -- 2019-12-31.

Subject Categories

Astronomy, Astrophysics and Cosmology

Atom and Molecular Physics and Optics

Geochemistry

Infrastructure

Onsala Space Observatory

DOI

10.1021/acsearthspacechem.9b00065

More information

Latest update

7/5/2024 1