Deep learning-based quantification of PET/CT prostate gland uptake: association with overall survival
Journal article, 2020
convolutional neural network
objective quantification
prostatic neoplasms
artificial intelligence
Author
Eirini Polymeri
University of Gothenburg
Sahlgrenska University Hospital
M. Sadik
Sahlgrenska University Hospital
R. Kaboteh
Sahlgrenska University Hospital
Pablo Borrelli
Sahlgrenska University Hospital
Olof Enqvist
Chalmers, Electrical Engineering, Signal Processing and Biomedical Engineering
Johannes Ulén
Eigenvision AB
M. Ohlsson
Halmstad University
E. Tragardh
Lund University
M. H. Poulsen
Odense Universitetshospital
J. Simonsen
Odense Universitetshospital
Poul Flemming Hoilund-Carlsen
Odense Universitetshospital
Åse (Allansdotter) Johnsson
University of Gothenburg
Sahlgrenska University Hospital
L. Edenbrandt
Sahlgrenska University Hospital
University of Gothenburg
Clinical Physiology and Functional Imaging
1475-0961 (ISSN) 1475097x (eISSN)
Vol. 40 2 106-113Subject Categories (SSIF 2011)
Urology and Nephrology
Radiology, Nuclear Medicine and Medical Imaging
Medical Image Processing
DOI
10.1111/cpf.12611
PubMed
31794112