A new approach for uncertainty analysis of ETW Rider Head Injury Reconstruction via Coupling Response Surface and Monte Carlo methodologies
Journal article, 2020

Traditional vehicle accident reconstructions do not take into account all existing uncertainties and may over- or under-estimate the injury risk. The objective of this study was to introduce a new uncertainty analysis method by applying Response Surface-Monte Carlo Methods (RS-MCM) to predict head injury risk in real electric two wheelers (ETW) to vehicle accidents. Vehicle impact velocity ranges in three detailed ETWs accidents (including video records and injury reports) were estimated using direct linear transformation (DLT) or video frame (VF) methods. A response surface methodology (RSM) was used to obtain an approximate model of the each real ETW accident, and a vehicle impact velocity distribution was estimated by applying the Monte Carlo Method (MCM) to the resulting model. If the velocity distribution was in agreement with the initial estimated velocity, the reconstruction quality was deemed acceptable. The injury severity was then assessed using the initial conditions resulting from the range of potential head impact conditions identified in the reconstruction activities. The identified head linear and angular impact velocities were input to finite element analyses to the THUMS Ver4.02 pedestrian head model and resulting in head injury criteria (HIC). The HIC values were further explored using the same RSM method used earlier to establish impact conditions. The distribution of reconstructed AIS levels show good agreement with the injury results from forensic reports. The results illustrated that the RS-MCM enriches the information for head trauma injury mechanisms caused by the vehicle collisions or ground impact.

Author

Yong Han

Xiamen University of Technology

Fujian Institute of New Energy Vehicle and Safety Technology

Jiashao Xu

Xiamen University of Technology

Robert Thomson

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Safety

Koji Mizuno

Nagoya University

Forensic Science International

0379-0738 (ISSN) 18726283 (eISSN)

Vol. 309 110195

Subject Categories

Mechanical Engineering

Mathematics

Driving Forces

Sustainable development

Areas of Advance

Transport

DOI

10.1016/j.forsciint.2020.110195

More information

Latest update

4/1/2020 1