Uniqueness of static, isotropic low-pressure solutions of the Einstein-Vlasov system
Journal article, 2020

In Beig and Simon (Commun Math Phys 144:373-390, 1992) the authors prove a uniqueness theorem for static solutions of the Einstein-Euler system which applies to fluid models whose equation of state fulfills certain conditions. In this article it is shown that the result of Beig and Simon (1992) can be applied to isotropic Vlasov matter if the gravitational potential well is shallow. To this end we first show how isotropic Vlasov matter can be described as a perfect fluid giving rise to a barotropic equation of state. This Vlasov equation of state is investigated, and it is shown analytically that the requirements of the uniqueness theorem are met for shallow potential wells. Finally the regime of shallow gravitational potential is investigated by numerical means. An example for a unique static solution is constructed, and it is compared to astrophysical objects like globular clusters. Finally we find numerical indications that solutions with deep potential wells are not unique.

General relativity

Perfect fluid

Uniqueness theorem

Vlasov matter

Author

Maximilian Thaller

Chalmers, Mathematical Sciences, Analysis and Probability Theory

Tomohiro Harada

Rikkyo University

Letters in Mathematical Physics

0377-9017 (ISSN) 1573-0530 (eISSN)

Vol. 110 7 1877-1901

Subject Categories

Computational Mathematics

Construction Management

Mathematical Analysis

DOI

10.1007/s11005-020-01284-y

More information

Latest update

3/9/2021 1