High-Temperature Charge-Stripe Correlations in La1.675Eu0.2Sr0.125CuO4
Journal article, 2020

We use resonant inelastic x-ray scattering to investigate charge-stripe correlations in La1.675Eu0.2Sr0.125CuO4. By differentiating elastic from inelastic scattering, it is demonstrated that charge-stripe correlations precede both the structural low-temperature tetragonal phase and the transport-defined pseudogap onset. The scattering peak amplitude from charge stripes decays approximately as T-2 towards our detection limit. The in-plane integrated intensity, however, remains roughly temperature independent. Therefore, although the incommensurability shows a remarkably large increase at high temperature, our results are interpreted via a single scattering constituent. In fact, direct comparison to other stripe-ordered compounds (La1.875Ba0.125CuO4, La1.475Nd0.4Sr0.125CuO4, and La1.875Sr0.125CuO4) suggests a roughly constant integrated scattering intensity across all these compounds. Our results therefore provide a unifying picture for the charge-stripe ordering in La-based cuprates. As charge correlations in La1.675Eu0.2Sr0.125CuO4 extend beyond the low-temperature tetragonal and pseudogap phase, their emergence heralds a spontaneous symmetry breaking in this compound.

Inelastic scattering

X ray scattering

Copper compounds

Author

Qisi Wang

University of Zürich

M. Horio

University of Zürich

K. von Arx

University of Zürich

Y. Shen

Fudan University

D. John Mukkattukavil

Uppsala University

Yasmine Sassa

Chalmers, Physics, Materials Physics

O. Ivashko

University of Zürich

C. E. Matt

Paul Scherrer Institut

University of Zürich

S. Pyon

University of Tokyo

T. Takayama

University of Tokyo

H. Takagi

University of Tokyo

T. Kurosawa

Hokkaido University

N. Momono

Muroran Institute of Technology

Hokkaido University

M. Oda

Hokkaido University

T. Adachi

Sophia University

S. M. Haidar

Tohoku University

Y. Koike

Tohoku University

Y. Tseng

Paul Scherrer Institut

W. Zhang

Paul Scherrer Institut

J. Zhao

Collaborat Innovat Ctr Adv Microstruct

Fudan University

K. Kummer

European Synchrotron Radiation Facility (ESRF)

M. Garcia-Fernandez

Diamond Light Source

Ke-Jin Zhou

Diamond Light Source

N. B. Christensen

Technical University of Denmark (DTU)

H. M. Ronnow

Swiss Federal Institute of Technology in Lausanne (EPFL)

T. Schmitt

Paul Scherrer Institut

J. Chang

University of Zürich

Physical Review Letters

0031-9007 (ISSN) 1079-7114 (eISSN)

Vol. 124 18 187002

Subject Categories

Physical Chemistry

Atom and Molecular Physics and Optics

Condensed Matter Physics

DOI

10.1103/PhysRevLett.124.187002

More information

Latest update

9/29/2020