The evolution of gamma-ray burst jet opening angle through cosmic time
Journal article, 2020

Jet opening angles of long gamma-ray bursts (lGRBs) appear to evolve in cosmic time, with lGRBs at higher redshifts being on average more narrowly beamed than those at lower redshifts. We examine the nature of this anticorrelation in the context of collimation by the progenitor stellar envelope. First, we show that the data indicate a strong correlation between gamma-ray luminosity and jet opening angle, and suggest this is a natural selection effect - only the most luminous GRBs are able to successfully launch jets with large opening angles. Then, by considering progenitor properties expected to evolve through cosmic time, we show that denser stars lead to more collimated jets; we argue that the apparent anticorrelation between opening angle and redshift can be accounted for if lGRB massive star progenitors at high redshifts have higher average density compared to those at lower redshifts. This may be viable for an evolving initial mass function (IMF) - under the assumption that average density scales directly with mass, this relationship is consistent with the form of the IMF mass evolution suggested in the literature. The jet angle-redshift anticorrelation may also be explained if the lGRB progenitor population is dominated by massive stars at high redshift, while lower redshift lGRBs allow for a greater diversity of progenitor systems (that may fail to collimate the jet as acutely). Overall, however, we find both the jet angle-redshift anticorrelation and jet angle-luminosity correlation are consistent with the conditions of jet launch through, and collimation by, the envelope of a massive star progenitor.

gamma-ray burst: general

Author

Nicole Lloyd-Ronning

University of New Mexico

Los Alamos National Laboratory

Valeria U. Hurtad

Los Alamos National Laboratory

Aycin Aykutalp

Los Alamos National Laboratory

Jarrett Johnson

Los Alamos National Laboratory

Chiara Ceccobello

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Monthly Notices of the Royal Astronomical Society

0035-8711 (ISSN) 1365-2966 (eISSN)

Vol. 494 3 4371-4381

Subject Categories

Subatomic Physics

Aerospace Engineering

Astronomy, Astrophysics and Cosmology

DOI

10.1093/mnras/staa1057

More information

Latest update

9/14/2021