Enhancement of Functional Properties of Liquid Electrolytes for Lithium-Ion Batteries by Addition of Pyrrolidinium-Based Ionic Liquids with Long Alkyl-Chains
Journal article, 2020

Three ionic liquid belonging to the N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imides (Pyr(1),nTFSI with n=4,5,8) have been added as co-solvent to two commonly used electrolytes for Li-ion cells: (a) 1 M lithium hexafluorophosphate (LiPF6) in a mixture of ethylene carbonate (EC) and linear like dimethyl carbonate (DMC) in 1 : 1 v/v and (b) 1 M lithium bis-(trifluoromethanesulfonyl)imide (LiTFSI) in EC : DMC 1 : 1 v/v. These electrolyte formulations (classified as P and T series containing LiPF6 or LiTFSI salts, respectively) have been analyzed by comparing ionic conductivities, transport numbers, viscosities, electrochemical stability as well as vibrational properties. In the case of the Pyr(1,5)TFSI and Pyr(1,8)TFSI blended formulations, this is the first ever reported detailed study of their functional properties in Li-ion cells electrolytes. Overall, P-electrolytes demonstrate enhanced properties compared to the T-ones. Among the various P electrolytes those containing Pyr(1,4)TFSI and Pyr(1,5)TFSI limit the accumulation of irreversible capacity upon cycling with satisfactory performance in lithium cells.

Li-ion batteries

non-aqueous electrolytes

mitigation of the irreversible capacity in Li-ion cells

ionic liquids

Author

Arcangelo Celeste

University of Genoa

Istituto Italiano di Tecnologia

Laura Silvestri

ENEA

Marco Agostini

Chalmers, Physics, Materials Physics

Matthew Sadd

Chalmers, Physics, Materials Physics

Stefano Palumbo

Istituto Italiano di Tecnologia

Jaya Cumar Panda

Istituto Italiano di Tecnologia

Aleksandar Matic

Chalmers, Physics, Materials Physics

Vittorio Pellegrini

Istituto Italiano di Tecnologia

Sergio Brutti

Sapienza University of Rome

Batteries and Supercaps

25666223 (eISSN)

Vol. 3 10 1059-1068

Subject Categories

Materials Chemistry

Other Physics Topics

DOI

10.1002/batt.202000070

More information

Latest update

1/3/2024 9