Reliable Recovery of Hierarchically Sparse Signals for Gaussian and Kronecker Product Measurements
Journal article, 2020
recovery guarantee
restricted isometry property
machine-type communications
Kronecker product
hard thresholding
block sparse
Inverse problem
compressed sensing
sparse vectors
hierarchical sparsity
channel estimation
coherence
pursuit algorithms
Author
Ingo Roth
Freie Universität Berlin
Martin Kliesch
Heinrich Heine University Düsseldorf
Axel Flinth
Chalmers, Mathematical Sciences, Analysis and Probability Theory
Gerhard Wunder
Freie Universität Berlin
Jens Eisert
Freie Universität Berlin
IEEE Transactions on Signal Processing
1053-587X (ISSN) 1941-0476 (eISSN)
Vol. 68 4002-4016 9120242Subject Categories
Control Engineering
Signal Processing
Other Electrical Engineering, Electronic Engineering, Information Engineering
DOI
10.1109/TSP.2020.3003453