A measure of the size of the magnetospheric accretion region in TW Hydrae
Journal article, 2020

Stars form by accreting material from their surrounding disks. There is a consensus that matter flowing through the disk is channelled onto the stellar surface by the stellar magnetic field. This is thought to be strong enough to truncate the disk close to the corotation radius, at which the disk rotates at the same rate as the star. Spectro-interferometric studies in young stellar objects show that hydrogen emission (a well known tracer of accretion activity) mostly comes from a region a few milliarcseconds across, usually located within the dust sublimation radius1–3. The origin of the hydrogen emission could be the stellar magnetosphere, a rotating wind or a disk. In the case of intermediate-mass Herbig AeBe stars, the fact that Brackett γ (Brγ) emission is spatially resolved rules out the possibility that most of the emission comes from the magnetosphere4–6 because the weak magnetic fields (some tenths of a gauss) detected in these sources7,8 result in very compact magnetospheres. In the case of T Tauri sources, their larger magnetospheres should make them easier to resolve. The small angular size of the magnetosphere (a few tenths of a milliarcsecond), however, along with the presence of winds9,10 make the interpretation of the observations challenging. Here we report optical long-baseline interferometric observations that spatially resolve the inner disk of the T Tauri star TW Hydrae. We find that the near-infrared hydrogen emission comes from a region approximately 3.5 stellar radii across. This region is within the continuum dusty disk emitting region (7 stellar radii across) and also within the corotation radius, which is twice as big. This indicates that the hydrogen emission originates in the accretion columns (funnel flows of matter accreting onto the star), as expected in magnetospheric accretion models, rather than in a wind emitted at much larger distance (more than one astronomical unit).

Author

R. Garcia-Lopez

Max Planck Society

Dublin Institute for Advanced Studies

University College Dublin

A. Natta

Dublin Institute for Advanced Studies

A. Caratti o. Garatti

Dublin Institute for Advanced Studies

University College Dublin

Max Planck Society

Tom Ray

Dublin Institute for Advanced Studies

Rubén Fedriani

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Dublin Institute for Advanced Studies

M. Koutoulaki

European Southern Observatory (ESO)

Dublin Institute for Advanced Studies

L. Klarmann

Max Planck Society

K. Perraut

Grenoble Alpes University

J. Sanchez-Bermudez

Max Planck Society

Universidad Nacional Autónoma de México

M. Benisty

Grenoble Alpes University

University of Chile (UCH)

C. Dougados

Grenoble Alpes University

L. Labadie

University of Cologne

W. Brandner

Max Planck Society

P. J. V. Garcia

European Southern Observatory Santiago

Instituto Superior Tecnico

University of Porto

T. Henning

Max Planck Society

P. Caselli

Max Planck Society

G. Duvert

Grenoble Alpes University

T. De Zeeuw

Leiden University

Max Planck Society

R. Grellmann

University of Cologne

R. Abuter

European Southern Observatory (ESO)

A. Amorim

Instituto Superior Tecnico

University of Lisbon

M. Bauböck

Max Planck Society

J. P. Berger

European Southern Observatory (ESO)

Grenoble Alpes University

H. Bonnet

European Southern Observatory (ESO)

A. Buron

Max Planck Society

Y. Clénet

Université Paris PSL

V. Coudé Du Foresto

Université Paris PSL

W. J. De Wit

European Southern Observatory Santiago

A. Eckart

University of Cologne

Max Planck Society

F. Eisenhauer

Max Planck Society

M. Filho

University of Porto

Instituto Superior Tecnico

European Southern Observatory Santiago

F. Gao

Max Planck Society

C. E. Garcia Dabo

European Southern Observatory (ESO)

E. Gendron

Université Paris PSL

R. Genzel

University of California

Max Planck Society

S. Gillessen

Max Planck Society

M. Habibi

Max Planck Society

X. Haubois

European Southern Observatory Santiago

F. Haussmann

Max Planck Society

S. Hippler

Max Planck Society

Z. Hubert

Grenoble Alpes University

M. Horrobin

University of Cologne

Alejandra Jimenez-Rosales

Max Planck Society

L. Jocou

Grenoble Alpes University

P. Kervella

Université Paris PSL

J. Kolb

European Southern Observatory Santiago

S. Lacour

Université Paris PSL

J. B. Le Bouquin

Grenoble Alpes University

P. Léna

Université Paris PSL

T. Ott

Max Planck Society

T. Paumard

Université Paris PSL

G. Perrin

Université Paris PSL

O. Pfuhl

European Southern Observatory (ESO)

A. Ramirez

European Southern Observatory (ESO)

C. Rau

Max Planck Society

G. Rousset

Université Paris PSL

S. Scheithauer

Max Planck Society

J. Shangguan

Max Planck Society

J. Stadler

Max Planck Society

O. Straub

Max Planck Society

C. Straubmeier

University of Cologne

E. Sturm

Max Planck Society

E. F. van Dishoeck

Leiden University

Max Planck Society

F. H. Vincent

Université Paris PSL

S. von Fellenberg

Max Planck Society

F. Widmann

Max Planck Society

E. Wieprecht

Max Planck Society

M. Wiest

University of Cologne

E. Wiezorrek

Max Planck Society

Julien Woillez

European Southern Observatory (ESO)

S. Yazici

Max Planck Society

University of Cologne

G. Zins

European Southern Observatory Santiago

Nature

0028-0836 (ISSN) 1476-4687 (eISSN)

Vol. 584 7822 547-550

Subject Categories

Meteorology and Atmospheric Sciences

Fusion, Plasma and Space Physics

DOI

10.1038/s41586-020-2613-1

More information

Latest update

11/10/2020