Roles of intermolecular interactions in amyloid fibril formation mechanisms
Doctoral thesis, 2020
The work in this thesis involves biophysical studies of the amyloid fibril formation mechanisms of the natively folded Ca2+-binding fish protein, β-parvalbumin (β-PV); and how it is modulated by cell conditions including macromolecular crowding and stabilizing osmolytes, both of which tend to stabilize compact folded protein conformations through an excluded volume- or osmophobic effect, respectively. It was found that when β-PV aggregation is triggered, as occurs upon Ca2+ removal from the protein, spontaneous cystine formation between β-PV monomers initiates the process, whereafter the dimers template monomers into the amyloid conformation, resulting in polymerization. Furthermore, it was discovered that both excluded volume and the osmophobic effect promote the overall aggregation of β-PV, likely by facilitating protein dimerization. Together, these results highlight the potentially detrimental effects of ligand loss and oxidative stress on proteins, whose destabilization might induce amyloid fibril formation that is further exacerbated by otherwise protective in-cell conditions.
Amyloid fibril formation by fish β-PV at acidic pH is thought to confer protection against proteolytic degradation in the human gut. In addition, since recent evidence suggests that many incidences of the neurodegenerative disorder Parkinson’s disease (PD) might originate from the gut, a putative interaction between β-PV and α-synuclein (αS), which forms amyloid fibrils in PD, was tested in vitro. Amyloid fibrils of β-PV block αS aggregation, likely by sequestering αS monomers onto the surface, thus potentially implying a protective effect of a diet rich in fish against PD. Lastly, in light of the fact that copper is reduced in affected brain regions of PD patients, as well as the presence of copper binding sites on αS, aggregation of αS in the presence of the endogenous cytoplasmic copper chaperone, Atox1, was studied. It was found that copper-Atox1 interacts with αS and can prevent its aggregation, while apo-Atox1 is ineffective, indicating a copper dependent interaction. The reduced copper levels associated with PD might thus play a role in PD progression by abolishing this protective interaction.
disulfide-bonds
Atox1
α-synuclein
Aggregation
protein interactions
Parkinson’s disease
β-parvalbumin
macromolecular crowding
osmolytes
Amyloid fibrils
Author
Tony Werner
Chalmers, Biology and Biological Engineering, Industrial Biotechnology
Chalmers, Biology and Biological Engineering, Chemical Biology
Amyloid formation of fish β-parvalbumin involves primary nucleation triggered by disulfide-bridged protein dimers
Proceedings of the National Academy of Sciences of the United States of America,;Vol. 117(2020)p. 27997-28004
Journal article
Response to crowded conditions reveals compact nucleus for amyloid formation of folded protein
QRB Discovery,;Vol. 2(2021)
Journal article
Abundant fish protein inhibits α-synuclein amyloid formation
Scientific Reports,;Vol. 8(2018)
Journal article
Copper chaperone blocks amyloid formation via ternary complex
Quarterly Reviews of Biophysics,;Vol. 51(2018)p. e6-e6
Journal article
Denna avhandling kan delas in i två teman: (1) öka vår fundamentala förståelse kring mekanismerna för hur amyloidfibriller uppstår, i syfte att vägleda framtida forskning och behandling; (2) undersöka hur ett protein som bildar amyloidfibriller och är centralt till Parkinsons sjukdom, α-synuclein, interagerar med andra proteiner, för att på så bidra med mer specifik och applicerbar kunskap kring Parkinsons sjukdom. Detta har studerats med hjälp av biofysikaliska och biokemiska metoder. Mekanismen bakom bildandet av amyloidfibriller av det veckade Ca2+-bindande fiskproteinet β-parvalbumin studerades, där processen initieras av proteinets förlust av Ca2+-liganden vilket leder till en dimerisering genom disulfidformation. Formation av disulfider är något som kan ske på grund av oxidativ stress, som är ett vanligt förekommande tema i sjukdomar med amyloidfibriller. Efter att processen startats av dimererna kan monomererna rekryteras till polymeriseringsprocessen, och demonstrerar en potentiell kaskad av patogeniska händelser som leder till ackumulering av toxiska och svårnedbrytna amyloidfibriller. Utöver detta undersöktes också de vanligtvis proteinstabiliserande effekterna ”exkluderad volym”, som sker med höga koncentrationer av makromolekyler, och stabiliserande osmolyter, varpå båda visade att aggregationen av β-parvalbumin accelereras. I avseende på (2) upptäcktes det att amyloidfibriller av β-parvalbumin, som bildas vid lågt pH och tros ge proteolytiskt skydd, kan motverka aggregation av α-synuclein. I och med att Parkinsons tros starta från magen i många fall visar detta på en potentiell skyddande effekt av en fiskdiet. Slutligen undersöktes interaktionen av α-synuclein, som kan binda koppar, med ett kopparbindande protein, Atox1, där Atox1 visade sig kunna motverka formation av amyloidfibriller av α-synuclein. Detta påvisar en potentiell koppling mellan minskning av koppar i relevanta hjärnområden för Parkinsons sjukdom, samt påvisar att återställande av kopparnivåer kan vara en potentiell terapeutisk strategi.
Subject Categories
Biochemistry and Molecular Biology
Biophysics
ISBN
978-91-7905-388-8
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 978-91-7905-388-8
Publisher
Chalmers
Opponent: Anders Olofsson, Umeå University, Sweden