Tracing cosmic magnetic fields using molecules
Doctoral thesis, 2021

Understanding the magnetic field strength and morphology of astrophysical regions is of great importance to understand their dynamics. There exist a number of methods astronomers can employ to trace magnetic field structures, and each have their own limitations. This thesis focuses on tracing magnetic field using molecules.

A promising technique to trace the magnetic field morphology around evolved stars, or on the smallest scales of star forming regions, is (sub-)millimeter spectral line polarization observations. Line (linear) polarization can either arise in association with maser radiative transfer, or alternatively, molecular lines polarize through the Goldreich-Kylafis effect. In both cases, the polarization angle traces the magnetic field with a 90-degree ambiguity. In order to remove this ambiguity, and to estimate the observational viability of particular line polarization measurements, polarized line radiative transfer needs to be employed. This thesis contributes to this field in that it presents a three-dimensional polarized line radiative transfer tool: PORTAL. PORTAL simulates the emergence of thermal molecular line polarization in astrophysical objects of arbitrary geometry and magnetic field morphology. Also, this thesis introduces a novel polarization mechanism: collisional polarization. Which provides the possibility of directly detecting ambipolar diffusion in disks through the polarization of molecular ions.

Some molecules occur as masers. Masers occur naturally in specific astrophysical regions, which are often associated with highly dynamical events. Their emission is characterized by narrow lines and high brightness temperatures, and is often associated with polarization. The polarization of masers contains information on the magnetic field strength and direction of the regions they occur in. Many maser polarization observations have been performed over the last 30 years. However, one requires versatile maser polarization models that can aide in the interpretation of these observations. This thesis contributes to the study of maser polarization by presenting a modeling program called CHAMP (CHAracterizing Maser Polarization) that simulates the polarization of masers of arbitrarily high maser saturation and high angular momentum.

Methanol masers occur exclusively in association with high-mass star forming regions. They trace specific regions there, and may teach us about the magnetic field structures in the densest regions. There have been many polarization observations of methanol, but proper interpretation of them has not been possible because the molecular properties associated with its magnetic field interactions have been unknown. This thesis presents the first quantum chemical models of methanols magnetic field interactions. With them, we re-interpret the many previous methanol maser polarization observations and conclude that magnetic fields are dynamically important to the process of high-mass star formation.

Sal EB, EDIT Huset
Opponent: Helmut Wiesemeyer, Max Planck Institute for Radio Astronomy

Author

Boy Lankhaar

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

PORTAL: Three-dimensional polarized (sub)millimeter line radiative transfer

Astronomy and Astrophysics,;Vol. 636(2020)

Journal article

Collisional polarization of molecular ions: a signpost of ambipolar diffusion

Astronomy and Astrophysics,;Vol. 638(2020)

Journal article

Characterization of methanol as a magnetic field tracer in star-forming regions

Nature Astronomy,;Vol. 2(2018)p. 145-150

Journal article

En nästan osynlig kraft i rymden dominerar många, och genomsyrar alla, astrofysiska processer. Kraften förmedlas av magnetfält och för att uppskatta dess exakta inverkan måste det mätas med precision.

Denna avhandling handlar om att mäta kosmiska magnetfält med molekyler. Rymdens förhållanden medger att molekyler, vilka snurrar runt sina respektive axlar, orienterar sig i linje med kosmiska magnetfält. Det har som konsekvens att strålning som sänds ut från dessa molekyler är svagt riktade (polariserade) i magnetfältets riktning. Således kan dessa molekyler utgöra en sorts kosmisk kompass.

Emellertid måste den kosmiska kompassen finjusteras. Uppgiften kräver att alla de processer som inverkar på molekylernas orientering i magnetfältet modelleras kvantitativt. Denna avhandling presenterar kvantmekaniska modeller för de kosmiska molekylernas interaktion med strålning och magnetfält. Genom att kvantifiera processer för molekyler inbäddade i skilda astrofysiska system, kan vi tolka observationer av rymdens polarisationssignaler, och härleda informationen de håller om de kosmiska magnetfälten. I slutändan når vi en fördjupad förståelse för hur en stjärna tänds och slocknar.

Magnetic fields and the outflows during the formation and evolution of stars (OUTFLOWMAGN)

European Commission (EC) (EC/FP7/614264), 2014-05-01 -- 2019-04-30.

Fundamental physics, magnetic fields and gravity with recent and future radio interferometers

Swedish Research Council (VR) (2014-5713), 2014-01-01 -- 2019-12-31.

Subject Categories

Astronomy, Astrophysics and Cosmology

Atom and Molecular Physics and Optics

Theoretical Chemistry

Roots

Basic sciences

Infrastructure

C3SE (Chalmers Centre for Computational Science and Engineering)

ISBN

978-91-7905-445-8

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4912

Publisher

Chalmers

Sal EB, EDIT Huset

Online

Opponent: Helmut Wiesemeyer, Max Planck Institute for Radio Astronomy

More information

Latest update

11/8/2023