Polymer-Based Low-Cost Micromachining of Gap Waveguide Components
Licentiate thesis, 2021
Conventional metal waveguides have very strict fabrication requirements in terms of mechanical assembly and integration of RF electronics. In comparison, gap waveguide technology not only offers competitive loss performance but also provides several benefits in terms of assembly and integration of active components. A gap waveguide is a planar waveguide technology which does not suffer from the dielectric loss in planar waveguides and which does not require any electrical connections between the metal walls, in contrast to hollow waveguides. This thesis aims to realize gap waveguide components operating at mmWave and sub-mmWave frequency range, in a low-cost and time-efficient way by developing new polymer-based fabrication methods.
A template-based injection molding process has been designed to realize a high gain antenna operating at D band (110 -170 GHz). We can confirm that injection molding of OSTEMER is a straightforward and fast device fabrication method. In the proposed method, the time-consuming and complicated parts need to be fabricated only once and can later be reused.
A dry film photoresist-based method is also presented in this thesis to fabricate waveguide components operating between 220 - 320 GHz. Dry film photoresist offers rapid fabrication of waveguide components without using sophisticated tools. The measurement results presented in the thesis indicate that this dry film-based method is a promising method for fabricating waveguide components operating in mmWave and sub- mmWave frequency ranges.
mmWave
Polymer microfabrication
sub-mmWave
Dry film photoresist
MEMS
Gap waveguide
Antenna
Waveguide.
Injection molding
Author
Sadia Farjana
Chalmers, Microtechnology and Nanoscience (MC2), Electronics Material and Systems
Sadia Farjana, Mohammadamir Ghaderi, Ashraf Uz Zaman, Sofia Rahiminejad, Thomas Eriksson, Jonas Hansson, Yinggang Li, Thomas Emanuelsson, Sjoerd Haasl, Per Lundgren, Peter Enoksson. Realizing a 140 GHz Gap Waveguide Based Array Antenna by Low-Cost Injection Molding and Micromachining.
Dry film photoresist-based microfabrication: a new method to fabricate millimeter-wave waveguide components
Micromachines,;Vol. 12(2021)p. 1-13
Journal article
Sadia F., Mohammadamir G., Ashraf Uz Z., Sofia R., Per L., Peter E. Low Loss Gap Waveguide Transmission line and Transitions at 220–320 GHz Using Dry Film Micromachining.
Areas of Advance
Nanoscience and Nanotechnology
Subject Categories
Polymer Technologies
Nano Technology
Other Electrical Engineering, Electronic Engineering, Information Engineering
Infrastructure
Nanofabrication Laboratory
Technical report MC2 - Department of Microtechnology and Nanoscience, Chalmers University of Technology: 442
Publisher
Chalmers
Kollektorn
Opponent: Goutam Chattopadhyay, PhD, Fellow IEEE, Senior Research Scientist, NASA-Jet Propulsion Laboratory, California Institute of Technology