Photoinduced Processes in Molecular-Inorganic Materials - Design Strategies for Control of Photophysical and Photochemical Processes
Doctoral thesis, 2021
The work presented herein has been dedicated to mechanistic studies of photo-induced processes in molecular/inorganic materials. The aim has been to gather knowledge about how the materials can be designed to obtain control of the photoinduced processes; so that one process can be favored over another. Molecular/inorganic materials were used because of their favorable characteristics compared to molecules or inorganic materials alone in terms of combining the stability of inorganic materials with the tunability of molecules.
In this work, a derivative of the well-known singlet fission molecule 1,3-diphenylisobenzofuran was attached to various semiconductor films in solvents of different polarities. Studies of these materials revealed that utilizing semiconductors with a relatively low conduction band energy in a non-polar environment is favorable for achieving singlet fission followed by injection from the triplet excited state. Further, studies of molecular/semiconductor materials with both photosensitizer and catalyst molecules attached to the surfaces revealed that the charge separated lifetime between the photosensitizer and the semiconductor can be significantly extended by design of a patterned film of two different semiconductors. These studies further revealed that two-electron transfer from the conduction band to an attached molecular catalyst is possible; thus, these materials are promising for use in solar fuel generating assemblies. The results presented herein can be useful for future design of molecular/inorganic materials to achieve singlet fission as well as multi-electron transfer necessary for generating solar fuels.
Photochemistry
hybrid materials
solar energy conversion
charge separation
electron transfer
singlet fission
dye-sensitized semiconductors
mechanistic studies
Author
Elin Sundin
Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry
Singlet Fission and Electron Injection from the Triplet Excited State in Diphenylisobenzofuran-Semiconductor Assemblies: Effects of Solvent Polarity and Driving Force
Journal of Physical Chemistry C,;Vol. 124(2020)p. 20794-20805
Journal article
Two-colour photoswitching in photoresponsive inorganic thin films
Materials Advances,;Vol. 2(2021)p. 2328-2333
Journal article
Extending charge separation lifetime and distance in patterned dye-sensitized SnO2–TiO2 µm-thin films
Physical Chemistry Chemical Physics,;Vol. 19(2017)p. 22684-22690
Journal article
Evidence for Conduction Band-Mediated Two-Electron Reduction of a TiO2-Bound Catalyst Triggered by Visible Light Excitation of Co-Adsorbed Organic Dyes
Journal of Physical Chemistry C,;Vol. 122(2018)p. 25822-25828
Journal article
Effektiviteten hos solceller samt svårigheten att lagra solenergin är två faktorer som begränsar användningen av solenergi. I det här arbetet har jag studerat grundläggande växelverkan mellan molekyler, material och ljus för att förstå hur vi skulle kunna utnyttja solenergin bättre. Med en process som kallas singlett fission kan den teoretiskt maximala effekten hos solceller öka genom att energin från en ljuspartikel, en så kallad foton, delas mellan två molekyler. Det kan i sin tur resultera i fler laddningar i solcellen och då ge en högre effekt. Genom att producera bränslen från solljuset (”solbränslen”) istället för elektricitet skulle också solenergin kunna lagras på ett effektivare sätt.
I det här arbetet har vi designat kombinerade molekyl/halvledar-material och studerat ljusinducerade processer som är relevanta för solenergiomvandling i dessa. Målet med arbetet har varit att undersöka hur de ljusinducerade processerna påverkas av strukturen på molekylerna och halvledaren samt av miljön runt materialen. Resultaten presenterade i den här avhandlingen kan i framtiden vara till hjälp vid design av mer effektiva solceller samt material för produktion av solbränslen.
Driving Forces
Sustainable development
Areas of Advance
Nanoscience and Nanotechnology (SO 2010-2017, EI 2018-)
Materials Science
Subject Categories
Physical Chemistry
Chemical Sciences
ISBN
978-91-7905-474-8
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4941
Publisher
Chalmers
Online
Opponent: Associate Professor Kenneth Hanson, Florida State University, Tallahassee, USA