Comparison of Stimuli for Nonlinear System Response Classification
Journal article, 2020

As part of the development of an automated virtual design classification approach for nonlinear structural dynamics, alternative excitation functions are evaluated with respect to their overall performance and efficiency in feature-based response analysis. Robust design of nonlinear structures requires analysis of extensive parameter variations. Both the character of the stimulus and feature metrics used are central to the performance of a response classification approach. The main purpose of this study is to compare stimulus candidates with respect to their efficiency in response classification. A deterministic multilevel, multifrequency stepped-sine periodic test function is used as a baseline. Order-wise differences between generalized and linearized system frequency response functions are evaluated by a selected feature metric to allow categorization into primary, sub and super harmonic responses, as well as odd and even order response distortions. An alternative excitation function type is the pseudorandom phase multi-sine. Its robust variant estimates the best linear approximation of the generalized frequency response function and related nonlinear and noise variances, which can be used for response classification. The fast variant of this method further detects and classifies occurring even and odd order nonlinear responses using a hypothesis test. This article describes the application of these three methods to a virtually running two-piece rotor shaft model. Time response signals from simulated test parameter variations are used to calculate selected nonlinear feature metric values. The total simulation and measurement time, as well as the predictive performance in a few typical nonlinear response cases are evaluated.

Stepped-sine

Driveline

Multi-sines

Response classification

Nonlinear characterization

Structural dynamics

Frequency response functions

Author

Niclas Andersson

Volvo Cars

Thomas Abrahamsson

Chalmers, Mechanics and Maritime Sciences (M2), Dynamics

SAE International Journal of Vehicle Dynamics, Stability, and NVH

23802162 (ISSN)

Vol. 4 3 197-219

Subject Categories (SSIF 2011)

Probability Theory and Statistics

Control Engineering

Signal Processing

DOI

10.4271/10-04-03-0014

More information

Latest update

3/21/2023