Bacterial cellulose: A smart biomaterial with diverse applications
Review article, 2021

Natural biomaterials have benefited the human civilisation for millennia. However, in recent years, designing of natural materials for a wide range of applications have become a focus of attention, spearheaded by sustain-ability. With advances in materials science, new ways of manufacturing, processing, and functionalising bio-materials for structural specificity has become feasible. Our review is focused on bacterial cellulose (BC), an exceptionally versatile natural biomaterial. BC is a unique nanofibrillar biomaterial extruded by microscopic single-cell bacterial factories utilising the chemical energy harvested from renewable substrates. BC is extra-cellular and is intrinsically pure, unlike other biopolymers that require extraction and purification. BC fibres are 100 times thinner than plant-derived cellulose and exist in a highly porous three-dimensional network that is highly biocompatible. Macro fibres fabricated from BC nanofibrils are stronger and stiffer, have high tensile strength values and can be used as substitutes for fossil fuel-derived synthetic fibres. The increased surface area to volume ratio allows stronger interactions with the components of composites that are derived from BC. The reactive hydroxyl groups on BC allows various chemical modifications for the development of functionalised BC with a plethora of & lsquo;smart & rsquo; applications. In this review we consolidate the current knowledge on the production and properties of BC and BC composites, and highlight the very recent advancements in bulk applications, including food, paper, packaging, superabsorbent polymers and the bio-concrete industries. The process simplicity of BC production has the potential for large scale low-cost applications in bioremediation. Furthermore, the emerging high value applications of BC will be in electrochemical energy storage devices as a battery separator, and in transparent display technologies will be explored. Finally, the extensive biomedical applications of BC are discussed including, wound healing, controlled drug delivery, cancer treatment, cell culture and artificial blood vessels. In a further development on this, additive manufacturing considers enhancing the capabilities for manufacturing complex scaffolds for biomedical applications. An outlook on the future directions of BC in these and other innovative areas is presented.

Biomedical devices

Bacterial cellulose




Bioelectronic materials


David A. Gregory

University of Sheffield

Lakshmi Tripathi

University of Sheffield

Annabelle T. R. Fricker

University of Sheffield

Emmanuel Asare

University of Sheffield

Isabel Orlando

University of Sheffield

Vijayendran Raghavendran

Chalmers, Biology and Biological Engineering, Industrial Biotechnology

Ipsita Roy

University of Sheffield

Materials Science and Engineering: R: Reports

0927-796X (ISSN)

Vol. 145 100623

Subject Categories

Other Engineering and Technologies not elsewhere specified

Polymer Technologies

Textile, Rubber and Polymeric Materials



More information

Latest update

8/3/2021 1