on-Demand System Reliability: The DeSyRe project
Paper in proceeding, 2013
The DeSyRe project builds on-demand adaptive, reliable Systems-on-Chips. In response to the current semiconductor technology trends that make chips becoming less reliable, DeSyRe describes a new generation of by design reliable systems, at a reduced power and performance cost. This is achieved through the following main contributions. DeSyRe defines a fault-tolerant system architecture built out of unreliable components, rather than aiming at totally fault-free, and hence more costly chips. In addition, DeSyRe systems are on-demand adaptive to various types and densities of faults, as well as to other system constraints and application requirements. For leveraging on-demand adaptation/customization and reliability at reduced cost, a new dynamically reconfigurable substrate is proposed and combined with runtime system software support. The above define a generic and repeatable design framework for a large variety of SoCs, which within the project - is applied to two medical SoCs with high reliability constraints and diverse performance and power requirements. In this talk, an overview of the DeSyRe and our current research findings are described.