NERO: a biomedical named-entity (recognition) ontology with a large, annotated corpus reveals meaningful associations through text embedding
Journal article, 2021
Author
Kanix Wang
University of Chicago
Robert Stevens
University of Manchester
Halima Alachram
University of Göttingen
Yu Li
King Abdullah University of Science and Technology (KAUST)
Larisa N. Soldatova
Goldsmiths, University of London
Ross King
Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology
Alan Turing Institute
University of Cambridge
Sophia Ananiadou
University of Manchester
Annika M. Schoene
University of Manchester
Maolin Li
University of Manchester
Fenia Christopoulou
University of Manchester
José Luis Ambite
Information Sciences Institute
Joel Matthew
Information Sciences Institute
Sahil Garg
Information Sciences Institute
Ulf Hermjakob
Information Sciences Institute
Daniel Marcu
Information Sciences Institute
Emily Sheng
Information Sciences Institute
Tim Beißbarth
University of Göttingen
Edgar Wingender
geneXplain GmbH
Aram Galstyan
Information Sciences Institute
Xin Gao
King Abdullah University of Science and Technology (KAUST)
Brendan Chambers
University of Chicago
Weidi Pan
University of Chicago
Bohdan B. Khomtchouk
University of Chicago
James A. Evans
University of Chicago
Andrey Rzhetsky
University of Chicago
npj Systems Biology and Applications
20567189 (eISSN)
Vol. 7 1 38Subject Categories
Language Technology (Computational Linguistics)
Embedded Systems
Computer Systems
DOI
10.1038/s41540-021-00200-x