Hydrothermal Liquefaction of Kraft Lignin - The influence of capping agents and residence time
Licentiate thesis, 2021
This work has investigated the depolymerisation of kraft lignin in hydrothermal conditions under varying temperatures (290-335 °C), residence times (1-12 min) and charges of isopropanol (IPA/dry lignin, 0-4.9) which, aside from being a co-solvent, was hypothesised as acting as a capping agent. The influence of these reaction parameters on the molecular weights, yields and elemental compositions of the products was studied, along with changes in the molecular structure compared to the starting lignin.
The product is a suspension of solid material, i.e. char, in an aqueous phase and thus any desired organic liquid phase requires extraction from the aqueous product. While the yield of char increased with temperature and residence time, it decreased with increasing isopropanol loading, suggesting that the isopropanol does in fact act as a capping agent.
Most of the lignin forms a water-soluble fraction that precipitates when the aqueous product phase is acidified, thereby forming the precipitated solids fraction (PS). The components remaining dissolved after acidification of the product phase are known as acid soluble organics (ASO). A portion of the ASO fraction was aromatic monomers, with guaiacol dominating: this result was expected since the lignin was sourced from softwood. The amount of such monomers increased with residence time in the reactor.
Molecular weight analyses showed a rapid depolymerisation of the lignin within 1 min of hydrothermal liquefaction (HTL) treatment via a significant decrease in the molecular weight of all product fractions: char, PS and ASO. Moreover, the carbon-oxygen inter-unit linkages were found to break in this timeframe as well. The repolymerisation reactions started to exceed depolymerisation between residence times of 4 and 12 min, causing the weight average molecular weight (Mw) to increase again. Although minimising the residence time allows the char yield and Mw to be kept low, more monomers were formed at longer residence times. This calls for careful tuning of the residence time in the HTL of kraft lignin.
HTL
hydrothermal liquefaction
isopropanol
residence time
kraft lignin
Author
Anders Ahlbom
Chalmers, Chemistry and Chemical Engineering, Chemical Technology
Using Isopropanol as a Capping Agent in the Hydrothermal Liquefaction of Kraft Lignin in Near-Critical Water
Energies,;Vol. 14(2021)
Journal article
Ahlbom A, Maschietti M, Nielsen R, Hasani M, Theliander H. Towards understanding kraft lignin depolymerisation under hydrothermal conditions
Från lignin till biobränslen och specialkemikalier
Swedish Energy Agency (45395-1), 2018-01-01 -- 2021-12-31.
Subject Categories
Chemical Process Engineering
Other Chemical Engineering
Other Chemistry Topics
Infrastructure
Chalmers Materials Analysis Laboratory
Licentiatuppsatser vid Institutionen för kemi- och bioteknik, Chalmers tekniska högskola: 2021:22
Publisher
Chalmers