Incentives for recycling and incineration in LCA: Polymers in Product Environmental Footprints
Report, 2021

For material recycling to occur, waste material from a product life cycle must be made available for recycling and then used in the production of a new product. When recycling is beneficial for the environment, the LCA results should give incentives to collection for recycling and also to the use of recycled material in new products. However, most established methods for modelling recycling in LCA risk giving little or even wrong incentives. Many methods, such as the Circular Footprint Formula (CFF) in a Product Environmental Footprint (PEF), assign some of the environmental benefits of recycling to the product that uses recycled materials. This means that the incentive to send used products for recycling will be lower. If energy recovery also provides an environmental benefit, because the energy recovered substitutes energy supplied with a greater environmental impact, the LCA results may indicate
that the waste should instead be sent to incineration – even when recycling is the environmentally preferable option for the society.

This study aims to increase the knowledge on the extent to which PEF results, and LCA results in general, risk giving incorrect incentives for energy recovery from plastic waste. Our calculations focus on the climate impact of the recycling and incineration of LDPE waste generated in Sweden. Since this is a pilot study, we use easily available input data only. We estimate the net climate benefit through simple substitution, where recycled material is
assumed to replace virgin material and where energy recovered from LDPE waste is assumed to replace average Swedish district heat and electricity. We then apply the CFF to find whether a PEF would give the same indications. Our results show no risk of a PEF or LCA giving incorrect climate incentives for incineration of fossil LDPE. However, an LCA can wrongly indicate that renewable LDPE should be incinerated rather than recycled. Our results indicate
this can happen in a PEF when the heat and electricity substituted by incineration has 40-200% more climate impact than the Swedish average district heat and electricity.

Our study also aims to increase knowledge about the extent to which correct incentives can be obtained through a more thorough analysis of incineration with energy recovery – specifically, through:

    1. a deeper understanding of Factor B, which in the CFF can be used to assign part of the burdens and benefits of energy recovery to the energy instead of the product investigated, but which in the PEF guidelines by default is set to 0, or
    2. a broader systems perspective that accounts for the effects of energy recovery on waste imports and thus waste management in other countries.

We estimate Factor B based on the observation that waste incineration can be described as a process with multiple jointly determining functions. Waste treatment and energy recovery both contribute to driving investments in incineration. This, in turn, defines the volume of waste incinerated, the quantity of energy recovered, and the quantity of energy substituted. We propose that expected revenues from gate fees and energy are an appropriate basis for
calculating Factor B. Up-to-date estimates of the expected revenues in the relevant region should ideally be used for the calculations. Lacking such data,we suggest the value B=0.6 can be used in the CFF when modelling waste incineration in Sweden. Our PEF calculations with Factor B=0.6 indicate such a PEF will identify the environmentally best option for plastic waste management in almost all cases. However, this is at least in part luck: Factor B will vary over time and between locations, and other parts of the CFF varies between materials.

To account for the broader systems perspective, we develop two scenarios based on different assumptions on whether change in Swedish waste imports affects the incineration or landfilling in other European countries. The scenarios bring a large uncertainty into the results. This uncertainty is real in the sense that it is difficult to know how a change in Swedish waste imports in the end will affect waste management in other countries. The uncertainty still makes it difficult to draw conclusions on whether renewable LDPE should be recycled or incinerated.

Our suggestions for Factor B and European scenarios both make the CFF more balanced and consistent: it now recognizes that not only recycling but alsoenergy recovery depends on more than the flow of waste from the life cycle investigated. However, neither Factor B nor the broader systems perspective amends the fact that LCA tends to focus on one product at a time. This might not be enough to guide a development that requires coordinated or concerted actions between actors in different life cycles – such as increased recycling or energy recovery. Assessing decisions in one product life cycle at a time might in this context be compared to independently assessing the action of clapping one hand. This will most probably not result in an applaud.

Besides a more thorough assessment of energy recovery, we also discuss the option to give correct incentives for recycling from LCA by assigning the full environmental benefit of recycling to the product that generates waste for recycling but also to the product where the recycled material is used. We find that this 100/100 approach can give negative LCA results for products produced from recycled material and recycled to a high degree after recycling, because the benefits of recycling are counted twice. The LCA results would indicate that you save material resources by producing and recycling such products without ever using them. The 100/100 approach also lacks additivity, does not model foreseeable consequences, and does not assign a well-defined environmental value to the recovered secondary material.

To guide concerted actions, like recycling or energy recovery, it seems systems analysis should ideally assess the necessary actions in combination. Many situations require the environmental impacts to be estimated for a specific product or a specific action. In some cases, however, the LCA results can be calculated and presented with, for example, the following introduction:

“When the material is sent to recycling, you will, together with the recycler and the actor using the recycled material, jointly achieve this net environmental benefit: …”

Such joint assessment of supply and demand for secondary materials means the allocation problem is avoided. It is also consistent with the recommendation in the old SETAC “Code of Practice” to assess life cycles with recycling by studying the inputs and outputs from the total linked system.

Author

Tomas Ekvall

Environmental Systems Analysis

Marie Gottfridsson

Johan Nilsson

Maja Nellström

Maria Rydberg

Chalmers, Technology Management and Economics, TME verksamhetsstöd

Tomas Rydberg

Incentives for energy recovery in LCA for plastics

Swedish Environmental Protection Agency (NV-08073-20), 2020-11-01 -- 2021-01-31.

Driving Forces

Sustainable development

Areas of Advance

Energy

Materials Science

Subject Categories

Other Environmental Engineering

Environmental Management

Energy Systems

Publisher

Swedish Life Cycle Center

More information

Latest update

5/3/2022 7