Validity of solid-state Li+ diffusion coefficient estimation by electrochemical approaches for lithium-ion batteries
Journal article, 2022

The solid-state diffusion coefficient of the electrode active material is one of the key parameters in lithium-ion battery modelling. Conventionally, this diffusion coefficient is estimated through the galvanostatic intermittent titration technique (GITT). In this work, the validity of GITT and a faster alternative technique, intermittent current interruption (ICI), are investigated regarding their effectiveness through a black-box testing approach. A Doyle-Fuller-Newman model with parameters for a LiNi0.8Mn0.1Co0.1O2 electrode is used as a fairly faithful representation as a real battery system, and the GITT and ICI experiments are simulated to extract the diffusion coefficient. With the parameters used in this work, the results show that both the GITT and ICI methods can identify the solid-state diffusion coefficient very well compared to the value used as input into the simulation model. The ICI method allows more frequent measurement but the experiment time is 85% less than what takes to perform a GITT test. Different fitting approaches and fitting length affected the estimation accuracy, however not significantly. Moreover, a thinner electrode, a higher C-rate and a greater electrolyte diffusion coefficient will lead to an estimation of a higher solid-state diffusion coefficient, generally closer to the target value.

Li-ion battery

Intermittent current interruption

Galvanostatic intermittent titration technique



Zeyang Geng

Chalmers, Electrical Engineering, Electric Power Engineering, Electrical Machines and Power Electronics

Yu Chuan Chien

Uppsala University

Matthew Lacey

Scania CV AB

Torbjörn Thiringer

Chalmers, Electrical Engineering, Electric Power Engineering, Electrical Machines and Power Electronics

D. Brandell

Uppsala University

Electrochimica Acta

0013-4686 (ISSN)

Vol. 404 139727

Li-Jon batteri

Swedish Energy Agency (2016-006054//42789-1), 2016-11-15 -- 2019-12-31.

Subject Categories

Medical Laboratory and Measurements Technologies

Other Medical Engineering

Other Chemical Engineering



More information

Latest update

1/9/2022 9