Pulse-level noisy quantum circuits with QuTiP
Journal article, 2022

The study of the impact of noise on quantum circuits is especially relevant to guide the progress of Noisy Intermediate- Scale Quantum (NISQ) computing. In this paper, we address the pulse-level simulation of noisy quantum circuits with the Quantum Toolbox in Python (QuTiP). We introduce new tools in qutip-qip, QuTiP's quantum information processing package. These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features. We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian that describes the unitary evolution of the physical qubits. Various types of noise can be introduced based on the physical model, e.g., by simulating the Lindblad densitymatrix dynamics or Monte Carlo quantum trajectories. In particular, the user can define environment-induced decoherence at the processor level and include noise simulation at the level of control pulses. We illustrate how the Deutsch- Jozsa algorithm is compiled and executed on a superconducting-qubit-based processor, on a spin-chain-based processor and using control optimization algorithms. We also show how to easily reproduce exper- imental results on cross-talk noise in an ion-based processor, and how a Ramsey experiment can be modeled with Lindblad dynamics. Finally, we illustrate how to integrate these features with other software frameworks.

Author

Boxi Li

Forschungszentrum Jülich

Shahnawaz Ahmed

Chalmers, Microtechnology and Nanoscience (MC2), Applied Quantum Physics

Sidhant Saraogi

Georgetown University

Neill Lambert

RIKEN

F. Nori

RIKEN

University of Michigan

Alexander Pitchford

Aberystwyth University

Nathan Shammah

Unitary Fund

Quantum

2521327X (eISSN)

Vol. 6 A7

Subject Categories

Control Engineering

Computer Science

Computer Systems

DOI

10.22331/Q-2022-01-24-630

More information

Latest update

1/3/2024 9