Nitriles in Prebiotic Chemistry and Astrobiology
Doctoral thesis, 2022
The first part of this thesis is devoted to hydrogen cyanide (HCN) chemistry. HCN is believed to have been present on early Earth. Molecular building blocks of DNA, RNA, and proteins have been detected among HCN reaction products. However, because of HCN’s reactivity, the molecule forms numerous other compounds as well. One such set of proposed reaction products are HCN-derived polymers - a diverse group of structures which have been proposed to form in many ways. Here I present a thermodynamic landscape of HCN-derived molecules and polymers. Using the thermodynamic map, some hypothesized reaction pathways are proven to be unfeasible. Polyaminoimidazole is estimated to be one of the most stable polymers, while the nucleobase adenine is computed as the most stable of all studied structures. We also investigate the first steps in the formation of two proposed HCN reaction products: diaminomaleonitrile and polyimine. Our results reveal that all studied competing reactions have similar activation barriers. These results open for the possibility of a diverse beginning to HCN oligomerization under kinetic control. The estimated timescale of HCN oligomerization suggests that reactions in low-temperature environments as cold as 200 K could occur within thousands of years. I discuss the implications of the predicted reaction rates for HCN chemistry in astrochemical environments like comets and Saturn’s moon Titan.
The second part of the thesis investigates an astrobiological hypothesis: the possibility for cryogenically operable membranes in the seas of Titan. It is concluded that a previously suggested polarity-inverted membrane made from acrylonitrile, a so-called azotosome, cannot spontaneously self-assemble and is therefore unlikely to exist on Titan.
prebiotic chemistry
hydrogen cyanide
polymer chemistry
metadynamics
molecular dynamics
density functional theory
umbrella sampling
astrobiology
Author
Hilda Sandström
Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry
The Beginning of HCN Polymerization: Iminoacetonitrile Formation and Its Implications in Astrochemical Environments
ACS Earth and Space Chemistry,;Vol. 5(2021)p. 2152-2159
Journal article
Can polarity-inverted membranes self-assemble on Titan?
Science advances,;Vol. 6(2020)
Journal article
Sandström, H, Rahm, M. Simulating the Origin of Hydrogen Cyanide Polymerization.
A Thermodynamic Landscape of Hydrogen Cyanide-Derived Molecules and Polymers
ACS Earth and Space Chemistry,;Vol. 8(2024)p. 1272-1280
Journal article
Tack vare framsteg inom biokemi så känner man idag till den molekylära strukturen av
även de minsta beståndsdelarna hos levande ting. Till exempel så vet man att den
genetiska informationen lagras som DNA, och hur energi utvinns genom nedbrytning
av organiska föreningar. Men hur uppstod dessa system? Den här avhandlingen
utforskar hypoteser om de kemiska reaktioner som kan ha lett till livets ursprung. Jag
har lagt speciellt fokus vid att undersöka reaktioner med vätecyanid. Vätecyanid tros ha
skapats i den tidiga jordatmosfären. Dessutom kan molekylen i sig reagera vidare och
bilda många organiska ämnen, bland annat beståndsdelar till proteiner och DNA.
Eftersom vätecyanid är mycket giftigt är dess kemi utmanande att studera
experimentellt. Jag har i stället undersökt vätecyanidkemi genom datorsimuleringar,
med hjälp av så kallad kvantkemi. Sådana beräkningar möjliggör att studera material på
atomskala och kan ge en bättre insikt i möjligheterna för vätecyanidkemi tidigt i jordens
historia och på andra platser i vårt och andra solsystem. Flera frågeställningar kring
livets ursprung är kopplade till kemi som kan ske på många olika platser, som till
exempel Saturnus måne Titan. Temperaturen på Titan är så låg att dess sjöar och hav är
fyllda av flytande metan och etan. I den här avhandlingen så har jag bland annat
undersökt om ett annorlunda slags cellmembran kan bildas utav akrylnitril i Titans
sjöar.
Nya material med relevans för livets ursprung och planetforskning
Swedish Research Council (VR) (2016-04127), 2017-01-01 -- 2020-12-31.
Roots
Basic sciences
Infrastructure
C3SE (Chalmers Centre for Computational Science and Engineering)
Subject Categories
Other Basic Medicine
Chemical Sciences
ISBN
978-91-7905-652-0
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5118
Publisher
Chalmers
KE-salen, Kemigården 4
Opponent: Antonino Marco Saitta, Institute for Mineralogy, Université Pierre et Marie Curie - Sorbonne, France.
Related datasets
Theoretical studies of iminoacetonitrile formation [dataset]
DOI: https://doi.org/10.5878/37fw-8a25 ID: 2021-131