Hydrogen in the European energy system - The cost dynamics and the value of time-shifting electricity generation
Licentiate thesis, 2022
This work applies a techno-economic optimization model, which includes both the historical electricity demand and new demands from an electrified transport sector and several electrified industrial processes, to evaluate the dynamics of a future European energy system with zero-carbon emissions. The model includes both exogenous (industry and transport) and endogenous (time-shifting of electricity generation) hydrogen demands, to allow evaluation of the impacts of hydrogen demands with different characteristics and the value of shifting electricity generation in time through the use of hydrogen.
The results show that electricity is the main parameter that influences the cost of hydrogen, although cost-optimal dimensioning of the electrolyzer and hydrogen storage capacities also affects the hydrogen cost, as these capacities recurrently limit hydrogen production over the year, and thus set the marginal cost of the hydrogen supply. Another decisive factor is the nature of the hydrogen demand, where a flexible demand can have a considerable impact on the hydrogen cost, reducing it by up to 35%, as compared to a constant demand for hydrogen. Moreover, it is shown that a lower level of flexibility with respect to the hydrogen demand is often sufficient to attain this cost reduction.
We conclude that time-shifting of electricity generation through the use of hydrogen provides a value to the system by reducing the average electricity cost by 2%–7%, and this strategy is primarily competitive in regions with large shares of wind power. The reason for the stronger competitiveness in regions that are dominated by wind power is linked to the characteristics of the variations of the electricity generation patterns. Thus, fluctuations in generation from wind power can be described as fewer, more-irregular, and longer in duration, as compared to variations from solar PV, which are shorter in time and occur at a higher frequency (diurnal), and for which batteries are a more-suitable time-shifting technology. For reconversion of hydrogen back to electricity, gas turbines are shown to be the most-competitive technology, where flexible mixing of hydrogen in biogas increases the competitive edge, as the gas turbine can be used also when the cost of hydrogen is too high to generate a gross margin profit, which is required to recover the investment.
cost
energy systems modeling
Hydrogen
gas turbine
system dynamics
time-shifting
Author
Simon Öberg
Chalmers, Space, Earth and Environment, Energy Technology
Subject Categories
Energy Engineering
Other Environmental Engineering
Energy Systems
Publisher
Chalmers
Lecture room EE, Hörsalsvägen 11.
Opponent: Christian Andersson, Strategy Manager, Siemens Energy AB