Laser powder bed fusion processing and heat treatment of Ni-base superalloys: microstructure and properties
Licentiate thesis, 2022
The aim of this thesis study is to develop better understanding of the extent of these issues in different superalloys, their causes, and potential remedies. To understand aspects of processability, the alloy Haynes® 282® was studied to assess its feasibility for manufacture by means of PBF-LB, including susceptibility to cracking. Results showed excellent processibility of Haynes® 282® by PBF-LB, allowing to reach full-density crack-free components over the wide range of energy input, while also being resistant to post-process cracking.
Conventionally manufactured superalloys – cast or wrought – are currently considered as the benchmark in terms of mechanical performance. The microstructure and mechanical performance of PBF-LB processed Haynes® 282® after standard heat treatment was evaluated and compared to its wrought counterpart from the literature. PBF-LB processed Haynes® 282® showed finer grain sizes and discontinuous grain boundary carbides compared to wrought microstructure. Despite excellent room temperature tensile properties, clear anisotropy in high temperature mechanical performance of PBF-LB processed Haynes® 282® was observed, which is proposed to be addressed by heat treatment optimization.
Heat treatment is a critical post processing step for any precipitation strengthened alloy, and this is especially true for PBF-LB processed superalloys. Heat treatments developed for cast or wrought alloys may not be optimal for the same alloys in PBF-LB processed form because PBF-LB processed superalloys have a starting microstructure that is very different from equivalent cast or wrought microstructures. This aspect was studied in detail by evaluation of the as-built microstructure of Inconel 939, a high γ’-fraction superalloy. No γ’ precipitates were found in the as-built microstructure, however, η phase was found at inter-dendritic regions. This secondary phase was observed to grow upon ageing, lowering the ductility of the material. This demonstrates the importance of a solution treatment for Inconel 939, regardless of γ’ in the as-built condition. Further study also aimed to optimize the ageing heat treatment steps for PBF-LB manufactured Inconel 939. This resulted in a proposed ageing heat treatment which is shorter than the one used for conventional cast Inconel 939, which also produces improved and more isotropic tensile performance. Another aspect of heat treatment in PBF-LB processing is potential contamination of an alloy from the stress relief heat treatment carried out while a part is fused to a dissimilar building platform material. This was addressed in a study on Haynes® 282® built onto a carbon steel building platform. The study showed that no large-scale change in chemical composition occurred, suggesting that steel platforms are suitable for use with Ni-base superalloys.
microstructure.
Additive manufacturing
heat treatment
Inconel 939
Haynes 282
superalloys
powder bed fusion – laser beam
Author
Abdul Shaafi Shaikh
Chalmers, Industrial and Materials Science, Materials and manufacture
Microstructure and mechanical properties of Haynes 282 superalloy produced by laser powder bed fusion
Materials Today Communications,;Vol. 26(2021)
Journal article
Shaikh, A., Schulz, F., Minet-Lallemand, K., Hryha, E., On the effect of building platform material on laser-powder bed fusion of a Ni-base superalloy HAYNES® 282®
On as-built microstructure and necessity of solution treatment in additively manufactured Inconel 939
Powder Metallurgy,;Vol. 66(2023)p. 3-11
Journal article
On the Additive Manufacturing of Inconel 939 - Analysis of Microstructure and ReDevelopment of Heat Treatment
Proceedings - Euro PM2020 Congress and Exhibition,;(2020)
Paper in proceeding
Areas of Advance
Production
Subject Categories (SSIF 2011)
Manufacturing, Surface and Joining Technology
Other Materials Engineering
Metallurgy and Metallic Materials
Publisher
Chalmers
HA3, Hörsalsvägen 4, Campus Johanneberg Chalmers University of Technology, Gothenburg
Opponent: Associate Professor Mattias Thuvander, Department of Physics, Chalmers University of Technology