VCSEL Equivalent Circuits and Silicon Photonics Integration
Doctoral thesis, 2022
In this work, an advanced physics-based equivalent circuit model for datacom VCSELs has been developed. The model lends itself to co-design and co-optimization with driver and receiver ICs, thereby enabling higher data rate transceivers with bandwidth limited VCSELs and photodiodes. The model also facilitates an understanding of how each physical process within the VCSEL affects the VCSEL static and dynamic performance. It has been applied to study the impact of carrier transport and capture on VCSEL dynamics.
The work also includes micro-transfer-printing of GaAs-based single-mode VCSELs on silicon nitride photonic integrated circuits (PICs). Such PICs are increasingly used for e.g. compact and highly functional bio-photonic sensors. Transfer printing of VCSELs enables the much-needed on-PIC integration of power efficient light sources. The bottom-emitting VCSELs are printed above grating couplers on the PIC and optical feedback is used to control the polarization for efficient coupling to the silicon nitride waveguide. Wavelength tuning, as required by the bio-sensing application, is achieved by direct current modulation.
vertical-cavity surface-emitting laser
light source integration
equivalent circuit
silicon photonics
sensing
optical interconnects
Author
Alexander Grabowski
Chalmers, Microtechnology and Nanoscience (MC2), Photonics
Large-Signal Equivalent Circuit for Datacom VCSELs
Journal of Lightwave Technology,;Vol. 39(2021)p. 3225-3236
Journal article
Large-Signal Equivalent Circuit for Datacom VCSELs – Including Intensity Noise
Journal of Lightwave Technology,;(2022)p. 1-9
Journal article
Impact of Carrier Transport and Capture on VCSEL Dynamics
IEEE Journal of Quantum Electronics,;Vol. 59(2023)p. 1-6
Journal article
Enabling VCSEL-on-silicon nitride photonic integrated circuits with micro-transfer-printing
Optica,;Vol. 8(2021)p. 1573-1580
Journal article
Eftersom utvecklingen av VCSELar har kommit långt, har man nu för dataöverföring nått en flaskhals där det är svårt att vidare öka överföringstakten per laser. För att kringgå detta försöker man istället optimera övrig elektronik uppkopplad mot lasern. Arbetet i avhandlingen har därför fokuserat på att ta fram en elektrisk krets som skall motsvara lasern och kunna förutsäga hur den beter sig i olika situationer, just för att underlätta optimering av den övriga elektroniken.
Den andra aspekten som tas upp i avhandlingen är kiselfotonik, det vill säga användningen av kiselbaserade optiska kretsar för att överföra och manipulera ljus. Eftersom lasrar inte går att göra av kisel, har vi gjort VCSELar av ett annat material och för första gången demonstrerat integration på kiselfotoniska kretsar med hjälp av en massfabrikationvänlig metod, med tillämpningar bland annat i biologiska sensorer.
Hot-Optics
Swedish Foundation for Strategic Research (SSF) (CHI19-0004), 2021-01-01 -- 2025-12-31.
Circuit (PIX) Pilot Line For Life Science Applications (PIX4LIFE)
European Commission (EC) (EC/H2020/688519), 2016-01-01 -- 2018-12-31.
Multi-Tbps Optical Interconnects (MuTOI)
Swedish Foundation for Strategic Research (SSF) (SE13-0014), 2014-03-01 -- 2019-06-30.
Areas of Advance
Information and Communication Technology
Nanoscience and Nanotechnology
Energy
Driving Forces
Sustainable development
Subject Categories (SSIF 2011)
Telecommunications
Physical Sciences
Atom and Molecular Physics and Optics
Communication Systems
Electrical Engineering, Electronic Engineering, Information Engineering
Nano Technology
Other Electrical Engineering, Electronic Engineering, Information Engineering
Condensed Matter Physics
Infrastructure
Nanofabrication Laboratory
ISBN
978-91-7905-681-0
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5147
Publisher
Chalmers