Engineering a pure Dirac regime in ZrTe5
Journal article, 2023

Real-world topological semimetals typically exhibit Dirac and Weyl nodes that coexist with trivial Fermi pockets. This tends to mask the physics of the relativistic quasiparticles. Using the example of ZrTe5, we show that strain provides a powerful tool for in-situ tuning of the band structure such that all trivial pockets are pushed far away from the Fermi energy, but only for a certain range of Van der Waals gaps. Our results naturally reconcile contradicting reports on the presence or absence of additional pockets in ZrTe5, and provide a clear map of where to find a pure three-dimensional Dirac semimetallic phase in the structural parameter space of the material.

Author

Jorge I. Facio

Centro Atomico Bariloche

Leibniz Institute for Solid State and Materials Research Dresedn

Consejo Nacional de Investigaciones Cientificas y Tecnicas

E. Nocerino

Royal Institute of Technology (KTH)

Ion C. Fulga

Leibniz Institute for Solid State and Materials Research Dresedn

R. Wawrzyńczak

Max Planck Society

Joanna Brown

Max Planck Society

Genda Gu

Brookhaven National Laboratory

Qiang Li

Brookhaven National Laboratory

Stony Brook University

Martin Månsson

Royal Institute of Technology (KTH)

Yasmine Sassa

Chalmers, Physics, Materials Physics

O. Ivashko

Deutsches Elektronen-Synchrotron (DESY)

Martin V. Zimmermann

Deutsches Elektronen-Synchrotron (DESY)

Felix Mende

Technische Universität Dresden

J. Gooth

Max Planck Society

University of Bonn

S. Galeski

University of Bonn

Max Planck Society

J. van den Brink

Technische Universität Dresden

Leibniz Institute for Solid State and Materials Research Dresedn

Tobias Meng

Technische Universität Dresden

SciPost Physics

25424653 (eISSN)

Vol. 14 4 066

Subject Categories

Condensed Matter Physics

DOI

10.21468/SciPostPhys.14.4.066

Related datasets

Engineering a pure Dirac regime in ZrTe 5 [dataset]

DOI: 10.5281/zenodo.7395944

More information

Latest update

9/22/2023