Twist-angle dependent dehybridization of momentum-indirect excitons in MoSe2/MoS2 heterostructures
Journal article, 2023

The moiré superlattice has emerged as a powerful way to tune excitonic properties in two-dimensional van der Waals structures. However, the current understanding of the influence of the twist angle for interlayer excitons (IXs) in heterostructures is mainly limited to momentum-direct K-K transitions. In this work, we use a judicious combination of spectroscopy and many-particle theory to investigate the influence of the twist angle on momentum-indirect IXs of a MoSe2/MoS2 heterostructure. Here, the energetically lowest state is a dark and strongly hybridized ΓK exciton. We show that increasing the twist angle from an aligned structure (0∘ or 60∘) gives rise to a large blue shift of the IX, which is a manifestation of the strong dehybridization of this state. Moreover, for small twist angle heterostructures, our photoluminescence measurements reveal contributions from two IX states, which our modelling attributes to transitions from different moiré minibands. Our finding contributes to a better fundamental understanding of the influence of the moiré pattern on the hybridization of momentum-dark IX states, which may be important for applications in moiré-tronics including novel quantum technologies.

moiré

interlayer exciton

photoluminescence

MoSe /MoS 2 2

heterostructure

twist angle

transition metal dichalcogenide

Author

Nikodem Sokolowski

Centre national de la recherche scientifique (CNRS)

Swaroop Palai

Centre national de la recherche scientifique (CNRS)

Mateusz Dyksik

Wrocław University of Science and Technology

Katarzyna Posmyk

Centre national de la recherche scientifique (CNRS)

Wrocław University of Science and Technology

M Baranowski

Wrocław University of Science and Technology

Alessandro Surrente

Wrocław University of Science and Technology

D. K. Maude

Centre national de la recherche scientifique (CNRS)

Felix Carrascoso

Spanish National Research Council (CSIC)

Onur Cakiroglu

Spanish National Research Council (CSIC)

Estrella Sanchez

Spanish National Research Council (CSIC)

Alina Schubert

Spanish National Research Council (CSIC)

Carmen Munuera

Spanish National Research Council (CSIC)

Takashi Taniguchi

National Institute for Materials Science (NIMS)

Kenji Watanabe

National Institute for Materials Science (NIMS)

Joakim Hagel

Chalmers, Physics, Condensed Matter and Materials Theory

Samuel Brem

Philipps University Marburg

Andres Castellanos-Gomez

Spanish National Research Council (CSIC)

Ermin Malic

Chalmers, Physics, Condensed Matter and Materials Theory

Philipps University Marburg

Paulina Plochocka

Wrocław University of Science and Technology

Centre national de la recherche scientifique (CNRS)

2D Materials

2053-1583 (eISSN)

Vol. 10 3 034003

IMplementing MEasuRes for Sustainable Estuaries (IMMERSE)

European Commission (EC) (J-No:38-2-9-17), 2018-07-01 -- 2021-12-31.

Graphene Core Project 3 (Graphene Flagship)

European Commission (EC) (EC/H2020/881603), 2020-04-01 -- 2023-03-31.

Subject Categories (SSIF 2011)

Atom and Molecular Physics and Optics

Other Physics Topics

Condensed Matter Physics

DOI

10.1088/2053-1583/acdbdb

More information

Latest update

3/9/2025 1