On the Robustness of Statistical Models: Entropy-based Regularisation and Sensitivity of Boolean Deep Neural Networks
Doctoral thesis, 2023
Deep neural networks
Noise stability
Noisy labels
Noise sensitivity
Boolean functions
Regularisation
Author
Olof Zetterqvist
Chalmers, Mathematical Sciences, Applied Mathematics and Statistics
Zetterqvist, O., Jörnsten, R., Jonasson, J. Regularisation via observation weighting for robust classification in the presence of noisy labels.
Zetterqvist, O., Jonasson, J. Entropy weighted regularisation, a general way to debias regularisation penalties.
Jonasson, J., Steif, J, Zetterqvist, O. Noise Sensitivity and Stability of Deep Neural Networks for Binary Classification.
Roots
Basic sciences
Subject Categories
Communication Systems
Probability Theory and Statistics
Computer Systems
ISBN
978-91-7905-897-5
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5363
Publisher
Chalmers
Euler, Chalmers tvärgata 3
Opponent: Professor emeritus Timo Koski, avd matematik statistik, Kungliga tekniska högskolan, Stockholm, Sverige