Alignment of dense molecular core morphology and velocity gradients with ambient magnetic fields
Journal article, 2023

Studies of dense core morphologies and their orientations with respect to gas flows and the local magnetic field have been limited to only a small sample of cores with spectroscopic data. Leveraging the Green Bank Ammonia Survey alongside existing sub-millimeter continuum observations and Planck dust polarization, we produce a cross-matched catalogue of 399 dense cores with estimates of core morphology, size, mass, specific angular momentum, and magnetic field orientation. Of the 399 cores, 329 exhibit 2D v(LSR) maps that are well fit with a linear gradient, consistent with rotation projected on the sky. We find a best-fit specific angular momentum and core size relationship of J/M & PROP; R-1.82 & PLUSMN; 0.10, suggesting that core velocity gradients originate from a combination of solid body rotation and turbulent motions. Most cores have no preferred orientation between the axis of core elongation, velocity gradient direction, and the ambient magnetic field orientation, favouring a triaxial and weakly magnetized origin. We find, however, strong evidence for a preferred anti-alignment between the core elongation axis and magnetic field for protostellar cores, revealing a change in orientation from starless and prestellar populations that may result from gravitational contraction in a magnetically-regulated (but not dominant) environment. We also find marginal evidence for anti-alignment between the core velocity gradient and magnetic field orientation in the L1228 and L1251 regions of Cepheus, suggesting a preferred orientation with respect to magnetic fields may be more prevalent in regions with locally ordered fields.

ISM: kinematics and dynamics

stars: formation

ISM: evolution

ISM: structure

ISM: clouds

ISM: magnetic fields

Author

A. Pandhi

University of Toronto

R. K. Friesen

University of Toronto

L. Fissel

Queen's University

J. E. Pineda

Max Planck Institute for Extraterrestrial Physics

M. C-Y Chen

Queen's University

J. Di Francesco

University of Victoria

National Research Council Canada

A. Ginsburg

University of Florida

H. Kirk

National Research Council Canada

University of Victoria

P. C. Myers

Harvard-Smithsonian Center for Astrophysics

S. S. R. Offner

The University of Texas at Austin

Anna Punanova

Chalmers, Space, Earth and Environment, Onsala Space Observatory

F. Quan

University of Toronto

E. Redaelli

Max Planck Institute for Extraterrestrial Physics

E. Rosolowsky

University of Alberta

S. Scibelli

University of Arizona

Y. M. Seo

California Institute of Technology (Caltech)

Y. Shirley

University of Arizona

Monthly Notices of the Royal Astronomical Society

0035-8711 (ISSN) 1365-2966 (eISSN)

Vol. 525 1 364-392

Subject Categories

Astronomy, Astrophysics and Cosmology

Fusion, Plasma and Space Physics

DOI

10.1093/mnras/stad2283

More information

Latest update

9/1/2023 1