Sustainable product development in aeroengine manufacturing: challenges, opportunities and experiences from GKN Aerospace Engine System
Journal article, 2023

A radical shift in technology is necessary to enable future air transport solutions. Sustainability targets for aeroengine manufacturing mean more than reducing CO2 and NOX. The future will open up possibilities and bring new challenges when introducing hybrid- and electrical propulsion technologies using new materials, technology solutions and new business models. This article reports on findings from a longitudinal study and many years of collaboration between researchers and industry experts, where a first-tier aeroengine manufacturer transforms their product development capabilities to enable sustainable product development. The article highlights some activities undertaken and identifies critical challenges and opportunities remaining for a manufacturer of next-generation aeroengine solutions. It is argued that the challenge for aeroengine manufacturers to develop new-generation propulsive technologies will require a systemic change in the undertaking of design and development. The opportunities of sustainable technologies are evident yet require: (1) means to tighter integrate business and technology development, (2) the ability to quantify and assess sustainability impacts of different concept solutions, and (3) means to utilise natural resources, alloys and materials for a circular and life-cycle optimised solution.

Sustainable design

Sustainable product development

Design method

Capabilities

New technologies

Aerospace

Author

Sophie Isaksson Hallstedt

Chalmers, Industrial and Materials Science, Product Development

Blekinge Tekniska Högskola, BTH

Ola Isaksson

Chalmers, Industrial and Materials Science, Product Development

Johanna W. W. Nylander

GKN Aerospace Sweden

Petter Andersson

GKN Aerospace Sweden

Soren Knuts

GKN Aerospace Sweden

Design Science

20534701 (eISSN)

Vol. 9 e22

Subject Categories (SSIF 2011)

Production Engineering, Human Work Science and Ergonomics

Aerospace Engineering

DOI

10.1017/dsj.2023.22

More information

Latest update

10/5/2023