Microbial strategies for deconstruction of bark components
Doctoral thesis, 2023

Bark is the outermost part of a tree, and it is a protective layer against external threats such as microorganisms and environmental stressors. Bark consists of various polymers including lignin, cellulose, hemicellulose, and it also contains a large fraction of compounds known as extractives. The polymers and extractives are assembled into a heterogenous complex matrix, forming a highly recalcitrant material. Despite its protective role, bark is degraded in nature by microorganisms, yet little is known about the specific microorganisms involved and how they affect bark composition.

In this thesis, I have investigated different strategies that individual species and microbial communities employ to degrade bark and how enzymes hydrolyze pure polysaccharides and extractive compounds, focusing on spruce bark degradation. I analyzed a microbial community growing on spruce bark over six months and observed significant effects on the extractives, especially resin acids at the start of the cultivation. The community was dominated by bacteria, and guided by metagenomics, a new Pseudomonas species was isolated, sequenced, and shown to degrade the major resin acids present in spruce bark. The role of filamentous fungi in the microbial community was unclear, despite their reputation as exceptional lignocellulose degraders. Therefore, I studied fungi from the Basidiomycota and Ascomycota phyla known to employ different lignocellulose degradation strategies. I showed that the Basidiomycetes can degrade/modify resin acids, while the Ascomycetes instead appeared to tolerate resin acids. All fungi investigated were able to degrade the bark polysaccharides, with significant differences in pectin and xylan degradation. To understand xylan degrading mechanisms in more detail, I studied the growth of taxonomically different yeasts and biochemically characterized their xylanases. One of the yeasts, Wickerhamomyces canadensis, grew poorly on xylan but its growth was boosted when co-cultured with another yeast, Blastobotrys mokoenaii. This suggests that W. canadensis is a secondary degrader of xylan. For in-depth studies of extractive-degrading enzymes, I biochemically characterized three tannases from the bacterium Clostridium butyricum and demonstrated their ability to cleave oak bark tannins. My work contributes to our understanding of the microbial degradation of bark and the strategies employed by microbial communities, individual species, and enzymes to degrade bark.

extractives

fungi

microbial communities

polysaccharides

Bark

proteomics

enzymes

bacteria

yeast

SB-H3, Sven Hultins gata 6, Göteborg
Opponent: Associate Professor Mirjam Kabel, Wageningen University & Research, Wageningen, Nederländerna.

Author

Amanda Sörensen Ristinmaa

Chalmers, Life Sciences, Industrial Biotechnology

Amanda Sörensen Ristinmaa, Ekaterina Korotkova, Magnus Ø. Arntzen, Vincent G. H. Eijsink, Chunlin Xu, Anna Sundberg, Merima Hasani, and Johan Larsbrink. Exploring fungal strategies for degradation of spruce bark and its extractives and polysaccharides

Bark är en restprodukt inom pappers- och massaindustrin och varje år produceras det över ca 200 miljoner m3 bark i världen. I dagsläget bränns barken upp för att tillvarata energi, men barkens höga fukt- och mineralinnehåll försämrar utbytet vid förbränningsprocessen. Barkens funktion är att skydda trädet från angrepp, till exempel från mikroorganismer, och därför innehåller den s.k. extraktivämnen samt en mängd olika biopolymerer. Dessa komponenter i barken gör den även till en väldigt intressant förnybar resurs, som hitintills är i princip outnyttjad.

Även om det finns stora mänger bark tillgängligt, finns det ändå mycket att utforska gällande dess nedbrytning av mikroorganismer i naturen, vilket sker av deras enzymer. Enzymer katalyserar nedbrytningen av bark och kan därför underlätta utvinningen av extraktivämnen. Den här avhandlingen bidrar med grundläggande kunskap om vilka mikroorganismer som kan bryta ned/växa på bark samt en kartläggning över vilka enzymer de använder, och hur dessa enzymer fungerar.

Jag har analyserat barknedbrytningsprocessen, genom att identifiera vilka mikroorganismer som växer på granbark, samt kemiskt analysera barken under nedbrytningen. Detta har kombinerats med djupare studier av de enzymer som visade sig vara aktiva på biopolymerer och extraktivämnen i barken. Ett flertal mikroorganismer identifierades som kunde växa på bark, och av speciellt intresse var en ny art av Pseudomonas som bryter ner hartssyror, en av de mest toxiska komponenterna. Jag har även studerat svampar, både filamentösa och jäst, och visat hur de kan bryta ned sockerkedjorna i barken, med hjälp av kolhydratsnedbrytande enzym.

Denna avhandling bidrar till en ökad förståelse av barknedbrytningsprocessen, vilket är en grundförutsättning för nya metoder för en mer effektiv användning av ”restprodukten” bark. Bättre användning av bark skulle ha stor effekt i den skogsbaserade bioraffinaderiprocessen, med tanke på de stora mängderna av outnyttjad bark som idag inte används optimalt.

Biochemical conversion of bark

Swedish Energy Agency (46559-1), 2019-04-08 -- 2023-10-31.

Subject Categories

Industrial Biotechnology

Biological Sciences

Infrastructure

Chalmers Materials Analysis Laboratory

ISBN

978-91-7905-884-5

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5350

Publisher

Chalmers

SB-H3, Sven Hultins gata 6, Göteborg

Opponent: Associate Professor Mirjam Kabel, Wageningen University & Research, Wageningen, Nederländerna.

More information

Latest update

2/27/2024