Search for AGN counterparts of unidentified Fermi-LAT sources with optical polarimetry. Demonstration of the technique
Journal article, 2019
Aims: We demonstrate that optical polarimetry can be an advantageous and practical tool in the hunt for counterparts of the unidentified γ-ray sources (UGSs).
Methods: Using data from the RoboPol project, we validated that a significant fraction of active galactic nuclei (AGN) associated with 3FGL sources can be identified due to their high optical polarization exceeding that of the field stars. We performed an optical polarimetric survey within 3σ uncertainties of four unidentified 3FGL sources.
Results: We discovered a previously unknown extragalactic object within the positional uncertainty of 3FGL J0221.2+2518. We obtained its spectrum and measured a redshift of z = 0.0609 ± 0.0004. Using these measurements and archival data we demonstrate that this source is a candidate counterpart for 3FGL J0221.2+2518 and most probably is a composite object: a star-forming galaxy accompanied by AGN.
Conclusions: We conclude that polarimetry can be a powerful asset in the search for AGN candidate counterparts for unidentified Fermi sources. Future extensive polarimetric surveys at high Galactic latitudes (e.g., PASIPHAE) will allow the association of a significant fraction of currently unidentified γ-ray sources.
gamma rays: galaxies
Astrophysics - High Energy Astrophysical Phenomena
techniques: polarimetric
galaxies: active
Author
N. Mandarakas
et al.
Georgia Panopoulou
California Institute of Technology (Caltech)
Astronomy and Astrophysics
0004-6361 (ISSN) 1432-0746 (eISSN)
Subject Categories
Astronomy, Astrophysics and Cosmology