Hydride formation and dynamic phase changes during template-assisted Pd electrodeposition
Journal article, 2023

We investigated the structural evolution of electrochemically fabricated Pd nanowires in situ by means of grazing-incidence transmission small- and wide-angle x-ray scattering (GTSAXS and GTWAXS), x-ray fluorescence (XRF) and two-dimensional surface optical reflectance (2D-SOR). This shows how electrodeposition and the hydrogen evolution reaction (HER) compete and interact during Pd electrodepositon. During the bottom-up growth of the nanowires, we show that beta-phase Pd hydride is formed. Suspending the electrodeposition then leads to a phase transition from beta-phase Pd hydride to alpha-phase Pd. Additionally, we find that grain coalescence later hinders the incorporation of hydrogen in the Pd unit cell. GTSAXS and 2D-SOR provide complementary information on the volume fraction of the pores occupied by Pd, while XRF was used to monitor the amount of Pd electrodeposited.

nanowires

synchrotron

electrodeposition

palladium

nano-porous anodic alumina

hydrogen

x-ray scattering

Author

Giuseppe Abbondanza

Chalmers, Physics, Chemical Physics

Andrea Grespi

Lund University

Alfred Larsson

Lund University

Dmitry Dzhigaev

Lund University

Lorena Glatthaar

Justus Liebig University Giessen

Tim Weber

Justus Liebig University Giessen

Malte Blankenburg

Deutsches Elektronen-Synchrotron (DESY)

Zoltan Hegedues

Deutsches Elektronen-Synchrotron (DESY)

Ulrich Lienert

Deutsches Elektronen-Synchrotron (DESY)

Herbert Over

Justus Liebig University Giessen

Gary S. Harlow

University of Oregon

Edvin Lundgren

Lund University

Nanotechnology

0957-4484 (ISSN) 1361-6528 (eISSN)

Vol. 34 50 505605

In situ högenergetisk röntgendiffraktion från elektrokemiska material

Swedish Research Council (VR) (2015-06092), 2016-01-01 -- 2019-12-31.

Subject Categories (SSIF 2011)

Materials Chemistry

Areas of Advance

Materials Science

DOI

10.1088/1361-6528/acf66e

PubMed

37666238

More information

Latest update

10/27/2023