2023 Roadmap on molecular modelling of electrochemical energy materials
Review article, 2023

New materials for electrochemical energy storage and conversion are the key to the electrification and sustainable development of our modern societies. Molecular modelling based on the principles of quantum mechanics and statistical mechanics as well as empowered by machine learning techniques can help us to understand, control and design electrochemical energy materials at atomistic precision. Therefore, this roadmap, which is a collection of authoritative opinions, serves as a gateway for both the experts and the beginners to have a quick overview of the current status and corresponding challenges in molecular modelling of electrochemical energy materials for batteries, supercapacitors, CO2 reduction reaction, and fuel cell applications.

electrochemical interfaces

machine learning

molecular dynamics simulation

density-functional theory

electrochemical energy storage

electrocatalysis

Author

Chao Zhang

Uppsala University

Jun Cheng

Xiamen University

Yiming Chen

Argonne National Laboratory

Maria K.Y. Chan

Argonne National Laboratory

Qiong Cai

The Faraday Institution

University of Surrey

Rodrigo P. Carvalho

Uppsala University

Cleber F.N. Marchiori

Karlstad University

D. Brandell

Uppsala University

C. Moyses Araujo

Uppsala University

Karlstad University

Ming Chen

Huazhong University of Science and Technology

Xiangyu Ji

Huazhong University of Science and Technology

Guang Feng

Huazhong University of Science and Technology

Kateryna Goloviznina

Physicochimie des Electrolytes et Nanosystèmes Interfaciaux

Alessandra Serva

Physicochimie des Electrolytes et Nanosystèmes Interfaciaux

Mathieu Salanne

Physicochimie des Electrolytes et Nanosystèmes Interfaciaux

Institut Universitaire de France

Toshihiko Mandai

National Institute for Materials Science (NIMS)

Tomooki Hosaka

Tokyo University of Science

Mirna Alhanash

Chalmers, Physics, Materials Physics

Patrik Johansson

Chalmers, Physics, Materials Physics

Alistore - European Research Institute

Yun Ze Qiu

Tsinghua University

Hai Xiao

Tsinghua University

Michael Eikerling

RWTH Aachen University

Ryosuke Jinnouchi

Toyota Central Research Development Laboratory Inc

Marko M. Melander

University of Jyväskylä

Georg Kastlunger

Technical University of Denmark (DTU)

Assil Bouzid

Centre Européen de la Céramique

Alfredo Pasquarello

Swiss Federal Institute of Technology in Lausanne (EPFL)

Seung Jae Shin

Yonsei University

Korea Advanced Institute of Science and Technology (KAIST)

Minho M. Kim

Korea Advanced Institute of Science and Technology (KAIST)

Hyungjun Kim

Korea Advanced Institute of Science and Technology (KAIST)

Kathleen Schwarz

National Institute of Standards and Technology (NIST)

Ravishankar Sundararaman

Rensselaer Polytechnic Institute

JPhys Energy

2515-7655 (eISSN)

Vol. 5 4 041501

Battery Interface Genome - Materials Acceleration Platform - BIG-MAP

European Commission (EC) (EC/H2020/957189), 2020-09-01 -- 2023-08-31.

Subject Categories

Energy Engineering

Materials Chemistry

DOI

10.1088/2515-7655/acfe9b

More information

Latest update

12/1/2023