Fast Optimal Transport for Latent Domain Adaptation
Paper in proceeding, 2023

In this paper, we address the problem of unsupervised Domain Adaptation. The need for such an adaptation arises when the distribution of the target data differs from that which is used to develop the model and the ground truth information of the target data is unknown. We propose an algorithm that uses optimal transport theory with a verifiably efficient and implementable solution to learn the best latent feature representation. This is achieved by minimizing the cost of transporting the samples from the target domain to the distribution of the source domain.

Domain Adaptation

Optimal Transport

Author

Siddharth Roheda

Samsung Research Institute

Ashkan Panahi

Chalmers, Computer Science and Engineering (Chalmers), Data Science and AI

Hamid Krim

NC State College of Engineering

Proceedings - International Conference on Image Processing, ICIP

15224880 (ISSN)

1810-1814
9781728198354 (ISBN)

30th IEEE International Conference on Image Processing, ICIP 2023
Kuala Lumpur, Malaysia,

Subject Categories (SSIF 2011)

Computational Mathematics

Computer Science

DOI

10.1109/ICIP49359.2023.10222535

More information

Latest update

2/5/2024 2