A relative Yau-Tian-Donaldson conjecture and stability thresholds
Journal article, 2024

Generalizing Fujita-Odaka invariant, we define a function δ˜ on a set of generalized b-divisors over a smooth Fano variety. This allows us to provide a new characterization of uniform K-stability. A key role is played by a new Riemann-Zariski formalism for K-stability. For any generalized b-divisor D, we introduce a (uniform) D-log K-stability notion. We prove that the existence of a unique Kähler-Einstein metric with prescribed singularities implies this new K-stability notion when the prescribed singularities are given by the generalized b-divisor D. We connect the existence of a unique Kähler-Einstein metric with prescribed singularities to a uniform D-log Ding-stability notion which we introduce. We show that these conditions are satisfied exactly when δ˜(D)>1, extending to the D-log setting the δ-valuative criterion of Fujita-Odaka and Blum-Jonsson. Finally we prove the strong openness of the uniform D-log Ding stability as a consequence of the strong continuity of δ˜.

Kähler-Einstein metrics

K-stability

Yau-Tian-Donaldson conjecture

Author

Antonio Trusiani

Chalmers, Mathematical Sciences, Algebra and geometry

Advances in Mathematics

0001-8708 (ISSN) 1090-2082 (eISSN)

Vol. 441 109537

Subject Categories

Geometry

Probability Theory and Statistics

Mathematical Analysis

DOI

10.1016/j.aim.2024.109537

More information

Latest update

3/13/2024