Guided sequential ABC schemes for intractable Bayesian models
Preprint, 2023

Sequential algorithms such as sequential importance sampling (SIS) and sequential Monte Carlo (SMC) have proven fundamental in Bayesian inference for models not admitting a readily available likelihood function. For approximate Bayesian computation (ABC), SMC-ABC is the state-of-art sampler. However, since the ABC paradigm is intrinsically wasteful, sequential ABC schemes can benefit from well-targeted proposal samplers that efficiently avoid improbable parameter regions.
We contribute to the ABC modeller’s toolbox with novel proposal samplers that are conditional to summary statistics of the data. In a sense, the proposed parameters are “guided” to rapidly reach regions of the posterior surface that are compatible with the observed data. This speeds up the convergence of these sequential samplers, thus reducing the computational effort, while preserving the accuracy in the inference. We provide a variety of guided Gaussian and copula-based samplers for both SIS-ABC and SMC-ABC easing inference for challenging case-studies, including multimodal posteriors, highly correlated posteriors, hierarchical models with high-dimensional summary statistics (180 summaries used to infer 21 parameters) and a simulation study of cell movements (using more than 400 summaries).

Approximate Bayesian computation

sequential importance sampling

copulas

sequential Monte Carlo

simulation-based inference

Author

Umberto Picchini

Chalmers, Mathematical Sciences, Applied Mathematics and Statistics

Massimiliano Tamborrino

The University of Warwick

Statistical Inference and Stochastic Modelling of Protein Folding

Swedish Research Council (VR) (2013-5167), 2014-01-01 -- 2019-12-31.

Deep learning and likelihood-free Bayesian inference for stochastic modelling

Chalmers AI Research Centre (CHAIR), 2020-01-01 -- 2024-12-31.

Swedish Research Council (VR) (2019-03924), 2020-01-01 -- 2023-12-31.

Subject Categories

Probability Theory and Statistics

More information

Latest update

4/19/2024