Level-p-complexity of Boolean functions using thinning, memoization, and polynomials
Journal article, 2023

This paper describes a purely functional library for computing level-p-complexity of Boolean functions and applies it to two-level iterated majority. Boolean functions are simply functions from n bits to one bit, and they can describe digital circuits, voting systems, etc. An example of a Boolean function is majority, which returns the value that has majority among the n input bits for odd n. The complexity of a Boolean function f measures the cost of evaluating it: how many bits of the input are needed to be certain about the result of f. There are many competing complexity measures, but we focus on level-p-complexity — a function of the probability p that a bit is 1. The level-p-complexity Dp(f)��(�) is the minimum expected cost when the input bits are independent and identically distributed with Bernoulli(p) distribution. We specify the problem as choosing the minimum expected cost of all possible decision trees — which directly translates to a clearly correct, but very inefficient implementation. The library uses thinning and memoization for efficiency and type classes for separation of concerns. The complexity is represented using (sets of) polynomials, and the order relation used for thinning is implemented using polynomial factorization and root counting. Finally, we compute the complexity for two-level iterated majority and improve on an earlier result by J. Jansson.

Author

Julia Jansson

Chalmers, Mathematical Sciences, Applied Mathematics and Statistics

Patrik Jansson

Chalmers, Computer Science and Engineering (Chalmers), Functional Programming

Journal of Functional Programming

0956-7968 (ISSN) 1469-7653 (eISSN)

Vol. 33 e13

Subject Categories (SSIF 2011)

Probability Theory and Statistics

Computer Science

DOI

10.1017/S0956796823000102

More information

Latest update

4/23/2024