Modelling of Defects in Semiconductors
Doctoral thesis, 2024
A substantial portion of this thesis focuses on defects in bismuth vanadate, a promising semiconductor material for photoelectrochemical oxygen evolution. We review the fundamentals of water splitting as well as the theoretical foundations of the applied computational methods. The native defects of the material are investigated with a particular emphasis on the oxygen vacancy. Our results highlight the structural complexity of these defects and the important role of charge localization in the defect chemistry of the material. Additionally, we show that oxygen vacancies distort the host lattice and make phase identification through X-ray diffraction challenging. Furthermore, we find that these vacancies reduce the overpotential required for oxygen evolution if present at the surface of the material and that cobalt doping influences their stability.
The thesis also covers the application of machine learning interatomic potentials to the study of defects. The fundamentals of machine learning, with a particular emphasis on neural networks, are reviewed. We develop a new approach to machine learning interatomic potential design, enabling the construction of such potentials capable of simultaneously describing defects in multiple excitation states, and apply it to a divacancy defect in silicon carbide. This defect can act as a single-photon emitter, making the optical properties of the defect itself highly interesting. We conduct large-scale machine learning-accelerated molecular dynamics simulations and extract the emission lineshape of the defect from the generated trajectories.
silicon carbide
bismuth vanadate
defect modelling
machine learning interatomic potentials
solar energy
electronic structure theory
color centers
semiconductors
molecular dynamics
Author
Nicklas Österbacka
Chalmers, Physics, Condensed Matter and Materials Theory
Influence of Oxygen Vacancies on the Structure of BiVO<inf>4</inf>
Journal of Physical Chemistry C,;Vol. 125(2021)p. 1200-1207
Journal article
Charge Localization in Defective BiVO<inf>4</inf>
Journal of Physical Chemistry C,;Vol. 126(2022)p. 2960-2970
Journal article
Accelerating water oxidation on BiVO<inf>4</inf> photoanodes via surface modification with Co dopants
Journal of Materials Chemistry A,;Vol. 11(2023)p. 16648-16658
Journal article
Spontaneous Oxygen Vacancy Ionization Enhances Water Oxidation on BiVO<inf>4</inf>
ACS Energy Letters,;Vol. 9(2024)p. 153-158
Journal article
Christopher Linderälv, Nicklas Österbacka, Julia Wiktor, and Paul Erhart. Optical lineshapes of color centers in solids from classical autocorrelation functions
Huvudfokus ligger på vismutvanadat, som kan användas för att dela vattenmolekyler till vätgas och syre. Vi visar bland annat att syrevakanser, en typ av defekt som innebär att syreatomer saknas, kan förvränga materialet på ett vis som gör det svårare att identifiera vilken struktur man faktiskt lyckats framställa. Vi visar också att syrevakanser i materialets yta gör det lättare att dela vattenmolekyler. Detta skapar ny förståelse för vilken roll defekter kan spela i kemiska reaktioner på ytor.
Vi tittar även på kiselkarbid. Man hoppas kunna använda defekter i materialet för att konstruera exempelvis kvantdatorer. Vi introducerar en metod för att simulera dessa defekter med hjälp av maskininlärning. Detta låter oss utföra simuleringar som tar hänsyn till effekter som är svåra att hantera på andra vis. Detta kan på sikt hjälpa oss att nå djupare förståelse för denna typ av defekter.
Atomistic Design of Photoabsorbing Materials
Swedish Research Council (VR) (2019-03993), 2020-01-01 -- 2023-12-31.
Driving Forces
Sustainable development
Areas of Advance
Nanoscience and Nanotechnology
Energy
Materials Science
Roots
Basic sciences
Infrastructure
C3SE (Chalmers Centre for Computational Science and Engineering)
Subject Categories
Materials Chemistry
Condensed Matter Physics
ISBN
978-91-8103-049-5
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5507
Publisher
Chalmers
PJ-salen, Origo
Opponent: Prof. Núria López, Institute of Chemical Research of Catalonia, Spain